1887

Abstract

Two Gram-stain-negative and non-flagellated bacteria, YSTF-M3 and YSTF-M6, were isolated from a tidal flat from Yellow Sea, Republic of Korea, and subjected to a polyphasic taxonomic study. Neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that strains YSTF-M3 and YSTF-M6 belong to the genera and of the family , respectively. The 16S rRNA gene sequence similarities between strain YSTF-M3 and the type strains of species and between strain YSTF-M6 and the type strains of species were 94.1–98.4 and 97.3–98.3 %, respectively. The ANI and dDDH values between genomic sequences of strain YSTF-M3 and the type strains of five species and between those of strain YSTF-M6 and the type strains of three species were in ranges of 77.0–83.2 and 20.7–27.1 % and 79.4–81.5 and 22.3–23.9 %, respectively. The DNA G+C contents of strain YSTF-M3 and YSTF-M6 from genomic sequences were 34.1 and 31.1 %, respectively. Both strains contained MK-6 as predominant menaquinone and phosphatidylethanolamine as only major phospholipid identified. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strains YSTF-M3 and YSTF-M6 are separated from recognized species of the genera and , respectively. On the basis of the data presented, strains YSTF-M3 (=KACC 21639=NBRC 114499) and YSTF-M6 (=KACC 21640=NBRC 114500) are considered to represent novel species of the genera and , respectively, for which the names sp. nov. and sp. nov. are proposed.

Funding
This study was supported by the:
  • Rural Development Administration (Award PJ014442)
    • Principle Award Recipient: SooyeonPark
  • National Institute of Biological Resources (Award project on survey of indigenous species of Korea)
    • Principle Award Recipient: Jung-HoonYoon
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004815
2021-06-04
2024-04-19
Loading full text...

Full text loading...

References

  1. Bernardet J-F et al. Family I. Flavobacteriaceae Reichenbach 1992. In Krieg NR, Ludwig W, Whitman WB, Hedlund BP, Paster BJ. (editors) Bergey’s Manual of Systematic Bacteriology 4, 2nd ed. New York: Springer; 2011 pp 106–111
    [Google Scholar]
  2. Sohn JH, Lee J-H, Yi H, Chun J, Bae KS et al. Kordia algicida gen. nov., sp. nov., an algicidal bacterium isolated from red tide. Int J Syst Evol Microbiol 2004; 54:675–680 [View Article][PubMed]
    [Google Scholar]
  3. Nichols CM, Bowman JP, Guezennec J. Olleya marilimosa gen. nov., sp. nov., an exopolysaccharide-producing marine bacterium from the family Flavobacteriaceae, isolated from the Southern Ocean. Int J Syst Evol Microbiol 2005; 55:1557–1561 [View Article][PubMed]
    [Google Scholar]
  4. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article][PubMed]
    [Google Scholar]
  5. Hameed A, Shahina M, Lin S-Y, Cho J-C, Lai W-A et al. Kordia aquimaris sp. nov., a zeaxanthin-producing member of the family Flavobacteriaceae isolated from surface seawater, and emended description of the genus Kordia . Int J Syst Evol Microbiol 2013; 63:4790–4796 [View Article][PubMed]
    [Google Scholar]
  6. Du J, Liu Y, Lai Q, Dong C, Xie Y. Kordia zhangzhouensis sp. nov., isolated from the surface freshwater of the Jiulong River in China. Int J Syst Evol Micribiol 2015; 65:3379–3383
    [Google Scholar]
  7. Kim DI, Lee JH, Kim MS, Seong CN. Kordia zosterae sp. nov., isolated from the seaweed, Zostera marina . Int J Syst Evol Microbiol 2017; 67:4790–4795 [View Article][PubMed]
    [Google Scholar]
  8. Lee S-Y, Park S, Oh T-K, Yoon J-H. Description of Olleya aquimaris sp. nov., isolated from seawater, and emended description of the genus Olleya Mancuso Nichols et al. 2005. Int J Syst Evol Microbiol 2010; 60:887–891 [View Article][PubMed]
    [Google Scholar]
  9. Lee M-H, Jung Y-T, Park S, Yoon J-H. Olleya namhaensis sp. nov., isolated from wood falls, and emended description of the genus Olleya Mancuso Nichols et al. 2005 emend. Lee et al. 2010. Int J Syst Evol Microbiol 2013; 63:1610–1615 [View Article][PubMed]
    [Google Scholar]
  10. Nedashkovskaya OI, Kim S-G, Zhukova NV, Mikhailov VV. Olleya algicola sp. nov., a marine bacterium isolated from the green alga Ulva fenestrata . Int J Syst Evol Microbiol 2017; 67:2205–2210 [View Article][PubMed]
    [Google Scholar]
  11. Choi A, Oh H-M, Yang S-J, Cho J-C. Kordia periserrulae sp. nov., isolated from a marine polychaete Periserrula leucophryna, and emended description of the genus Kordia . Int J Syst Evol Microbiol 2011; 61:864–869 [View Article][PubMed]
    [Google Scholar]
  12. Baek K, Choi A, Kang I, Lee K, Cho J-C. Kordia antarctica sp. nov., isolated from Antarctic seawater. Int J Syst Evol Microbiol 2013; 63:3617–3622 [View Article][PubMed]
    [Google Scholar]
  13. Park S, Jung Y-T, Yoon J-H. Kordia jejudonensis sp. nov., isolated from the junction between the ocean and a freshwater spring, and emended description of the genus Kordia . Int J Syst Evol Microbiol 2014; 64:657–662 [View Article][PubMed]
    [Google Scholar]
  14. Qi F, Huang Z, Lai Q, Li D, Shao Z. Kordia ulvae sp. nov., a bacterium isolated from the surface of green marine algae Ulva sp. Int J Syst Evol Microbiol 2016; 66:2623–2628 [View Article][PubMed]
    [Google Scholar]
  15. Yoon JH, Lee ST, Kim SB, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997; 47:111–114 [View Article]
    [Google Scholar]
  16. Yoon J-H, Kim H, Kim I-G, Kang KH, Park Y-H. Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 2003; 53:1169–1174 [View Article][PubMed]
    [Google Scholar]
  17. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  18. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  19. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article][PubMed]
    [Google Scholar]
  20. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  22. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article][PubMed]
    [Google Scholar]
  23. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  24. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  25. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [View Article][PubMed]
    [Google Scholar]
  26. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  27. Park S, Won S-M, Kim H, Park D-S, Yoon J-H. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:2969–2974 [View Article][PubMed]
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  29. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  30. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994 pp 121–161
    [Google Scholar]
  31. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50 Pt 5:1861–1868 [View Article][PubMed]
    [Google Scholar]
  32. Reichenbach H. The order Cytophagales . In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH. (editors) The Prokaryotes, A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. New York: Springer; 1992 pp 3631–3675
    [Google Scholar]
  33. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  34. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  35. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [View Article][PubMed]
    [Google Scholar]
  36. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  37. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes . In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG. (editors) The Prokaryotes Berlin: Springer; 1981 pp 1302–1331
    [Google Scholar]
  38. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 1957; 49:25–68 [View Article][PubMed]
    [Google Scholar]
  39. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968; 95:1921–1942 [View Article][PubMed]
    [Google Scholar]
  40. Park S, Jung Y-T, Choi SJ, Yoon J-H. Erythrobacter aquimixticola sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2017; 67:2964–2969 [View Article][PubMed]
    [Google Scholar]
  41. Montero-Calasanz MDC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium . Int J Syst Evol Microbiol 2013; 63:4386–4395 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004815
Loading
/content/journal/ijsem/10.1099/ijsem.0.004815
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error