1887

Abstract

The strain DSM 22242 (=CCUG 57646=NR06) was taxonomically described in 2013 and named as Clavel 2013. In 2018, the name of the strain DSM 22242 was changed to (Clavel 2013) Nouioui 2018 due to taxonomic investigations of the closely related genera and within the phylum . However, the first whole draft genome of strain DSM 22242 was published by our group in 2019. Therefore, the genome was not available within the study of Nouioui (2018). The results of the polyphasic approach within this study, including phenotypic and biochemical analyses and genome-based taxonomic investigations [genome-wide average nucleotide identity (gANI), alignment fraction (AF), average amino acid identity (AAI), percentage of orthologous conserved proteins (POCP) and genome distance phylogeny (GBDP) tree], indicated that the proposed change of the name to was not correct. Therefore, it is proposed that the correct name of (Clavel 2013) Nouioui 2018 strain DSM 22242 is Clavel et al. 2013.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004814
2021-05-24
2024-04-25
Loading full text...

Full text loading...

References

  1. Maruo T, Sakamoto M, Ito C, Toda T, Benno Y. Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella . Int J Syst Evol Microbiol 2008; 58:1221–1227 [View Article][PubMed]
    [Google Scholar]
  2. Minamida K, Ota K, Nishimukai M, Tanaka M, Abe A et al. Asaccharobacter celatus gen. nov., sp. nov., isolated from rat caecum. Int J Syst Evol Microbiol 2008; 58:1238–1240 [View Article][PubMed]
    [Google Scholar]
  3. Minamida K, Tanaka M, Abe A, Sone T, Tomita F et al. Production of equol from daidzein by Gram-positive rod-shaped bacterium isolated from rat intestine. J Biosci Bioeng 2006; 102:247–250 [View Article][PubMed]
    [Google Scholar]
  4. Clavel T, Charrier C, Braune A, Wenning M, Blaut M et al. Isolation of bacteria from the ileal mucosa of TNFdeltaARE mice and description of Enterorhabdus mucosicola gen. nov., sp. nov. Int J Syst Evol Microbiol 2009; 59:1805–1812 [View Article][PubMed]
    [Google Scholar]
  5. Clavel T, Duck W, Charrier C, Wenning M, Elson C et al. Enterorhabdus caecimuris sp. nov., a member of the family Coriobacteriaceae isolated from a mouse model of spontaneous colitis, and emended description of the genus Enterorhabdus Clavel et al. 2009. Int J Syst Evol Microbiol 2010; 60:1527–1531 [View Article][PubMed]
    [Google Scholar]
  6. Clavel T, Charrier C, Wenning M, Haller D. Parvibacter caecicola gen. nov., sp. nov., a bacterium of the family Coriobacteriaceae isolated from the caecum of a mouse. Int J Syst Evol Microbiol 2013; 63:2642–2648 [View Article][PubMed]
    [Google Scholar]
  7. Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP et al. The mouse intestinal bacterial collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol 2016; 1:16131 [View Article][PubMed]
    [Google Scholar]
  8. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria . Front Microbiol 2018; 9:9 [View Article][PubMed]
    [Google Scholar]
  9. Danylec N, Stoll DA, Dötsch A, Huch M. Draft genome sequences of type strains of Gordonibacter faecihominis, Paraeggerthella hongkongensis, Parvibacter caecicola, Slackia equolifaciens, Slackia faecicanis, and Slackia isoflavoniconvertens . Microbiol Resour Announc 2019; 8:e01532–01518 [View Article][PubMed]
    [Google Scholar]
  10. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R et al. The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res 2020; 48:D606–D612 [View Article][PubMed]
    [Google Scholar]
  11. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article][PubMed]
    [Google Scholar]
  12. Meier-Kolthoff JP, Klenk H-P, Göker M. Taxonomic use of DNA G+C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article][PubMed]
    [Google Scholar]
  13. Danylec N, Stoll DA, Huch M. Draft genome sequences of type strains of Adlercreutzia muris and Ellagibacter urolithinifaciens, belonging to the family Eggerthellaceae . Microbiol Resour Announc 2019; 8:e01306–01319 [View Article][PubMed]
    [Google Scholar]
  14. Toh H, Oshima K, Suzuki T, Hattori M, Morita H. Complete genome sequence of the equol-producing bacterium Adlercreutzia equolifaciens DSM 19450T . Genome Announc 2013; 1:e00742-13 [View Article][PubMed]
    [Google Scholar]
  15. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article][PubMed]
    [Google Scholar]
  16. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article][PubMed]
    [Google Scholar]
  17. Gieschler S, Fiedler G, Böhnlein C, Grimmler C, Franz CMAP et al. Pseudomonas kielensis sp. nov. and Pseudomonas baltica sp. nov., isolated from raw milk in Germany. Int J Syst Evol Microbiol 2019; 71: 23 02 2021 [View Article][PubMed]
    [Google Scholar]
  18. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article][PubMed]
    [Google Scholar]
  19. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article][PubMed]
    [Google Scholar]
  20. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016; 4:e1900v1901
    [Google Scholar]
  21. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe 2014; 9:111–118 [View Article]
    [Google Scholar]
  22. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed]
    [Google Scholar]
  23. Parker TC, Tindall BJ, Garrity GM. International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2019; 69:S1–S111 [View Article][PubMed]
    [Google Scholar]
  24. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast Distance-Based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article][PubMed]
    [Google Scholar]
  25. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004814
Loading
/content/journal/ijsem/10.1099/ijsem.0.004814
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error