1887

Abstract

A Gram-stain negative, rod-shaped, facultatively aerobic, pale-beige-coloured bacterial strain, designated F7233, was isolated from coastal sediment sampled at Jingzi Bay, Weihai, PR China. Cells of strain F7233 were 0.3–0.4 µm wide, 1.2–1.4 µm wide long, non-spore-forming and motile with one flagellum. Optimum growth occurred at 30 °C, with 1.0 % (w/v) NaCl and at pH 6.5–7.0. Positive for nitrate reduction, hydrolysis of Tweens and oxidase activity. The sole respiratory quinone of strain F7233 was ubiquinone-10 and the predominant cellular fatty acid was summed feature 8 (C 7/C 6). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and one unidentified aminophospholipid. The G+C content of the chromosomal DNA was 63.3 mol%. Phylogenetic analysis of the 16S rRNA gene sequence revealed that the newly isolate belonged to the genus , with 96.8 % sequence similarity to MCCC 1A01226, 96.1 % similarity to JCM 20692 and 95.5% similarity to CC-SPIO-10-1. On the basis of phylogenetic, phenotypic and chemotaxonomic data, it is considered that strain F7233 should represent a novel species within the genus , for which the name sp. nov. is proposed. The type strain is F7233 (=MCCC 1H00419=KCTC 72859).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004807
2021-05-18
2024-04-23
Loading full text...

Full text loading...

References

  1. Uchino Y, Hirata A, Yokota A, Sugiyama J. Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 1998; 44:201–210 [View Article][PubMed]
    [Google Scholar]
  2. Pujalte MJ, Carmen Macián M, Arahal DR, Garay E. Stappia alba sp. nov., isolated from Mediterranean oysters. Syst Appl Microbiol 2005; 28:672–678 [View Article]
    [Google Scholar]
  3. Kim B-C, Park JR, Bae J-W, Rhee S-K, Kim K-H et al. Stappia marina sp. nov., a marine bacterium isolated from the Yellow Sea. Int J Syst Evol Microbiol 2006; 56:75–79 [View Article][PubMed]
    [Google Scholar]
  4. Biebl H, Pukall R, Lünsdorf H, Schulz S, Allgaier M et al. Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense. Int J Syst Evol Microbiol 2007; 57:1095–1107 [View Article][PubMed]
    [Google Scholar]
  5. Lai Q, Qiao N, Wu C, Sun F, Yuan J et al. Stappia indica sp. nov., isolated from deep seawater of the Indian Ocean. Int J Syst Evol Microbiol 2010; 60:733–736 [View Article][PubMed]
    [Google Scholar]
  6. Kämpfer P, Arun AB, Frischmann A, Busse H-J, Young C-C et al. Stappia taiwanensis sp. nov., isolated from a coastal thermal spring. Int J Syst Evol Microbiol 2013; 63:1350–1354 [View Article][PubMed]
    [Google Scholar]
  7. Liu Q-Q, Wang Y, Li J, Du Z-J, Chen G-J. Saccharicrinis carchari sp. nov., isolated from a shark, and emended descriptions of the genus Saccharicrinis and Saccharicrinis fermentans. Int J Syst Evol Microbiol 2014; 64:2204–2209 [View Article][PubMed]
    [Google Scholar]
  8. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  9. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  10. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  11. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  12. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  13. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  14. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article][PubMed]
    [Google Scholar]
  15. Zhang Z, Schwartz S, Wagner L, Miller W, Scott S. A greedy algorithm for aligning DNA sequences. J Comput Biol 2000; 7:203–214 [View Article][PubMed]
    [Google Scholar]
  16. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:D457–D462 [View Article][PubMed]
    [Google Scholar]
  17. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed]
    [Google Scholar]
  18. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed]
    [Google Scholar]
  19. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070
    [Google Scholar]
  20. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassifcation of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach genus Saccharicrinis and Saccharicrinis fermentans. Int J Syst Evol Microbiol 2000; 64:2204–2209
    [Google Scholar]
  21. Wang X-L, Zhao Y-N, Wang K, Du Z-J. Pararhodobacter oceanensis sp. nov., isolated from marine intertidal sediment and emended description of the genus Pararhodobacter. Int J Syst Evol Microbiol 2019; 69:866–870 [View Article][PubMed]
    [Google Scholar]
  22. Cowan ST, Steel KJ. Bacterial Characters and Characterization, 2nd ed. Cambridge: Cambridge University Press; 1974
    [Google Scholar]
  23. Dong XZ, Cai MY. Determination of Biochemical Characteristics. Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001 pp 370–398
    [Google Scholar]
  24. Du Z-J, Wang Y, Dunlap C, Rooney AP, Chen G-J. Draconibacterium orientale gen. nov., sp. nov., isolated from two distinct marine environments, and proposal of Draconibacteriaceae fam. nov. Int J Syst Evol Microbiol 2014; 64:1690 [View Article][PubMed]
    [Google Scholar]
  25. Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement, CLSI document. 2014 pp M100–S24
    [Google Scholar]
  26. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI technical note 101 DE. 1990 pp 1–7
    [Google Scholar]
  28. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  29. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article][PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based 332 species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 2013:60
    [Google Scholar]
  31. Rüger HJ, Höfle MG. Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev. Int J Syst Bacteriol 1992; 42:133–143 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004807
Loading
/content/journal/ijsem/10.1099/ijsem.0.004807
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error