1887

Abstract

We isolated a novel strain, R1DC25, described as gen. nov. sp. nov. from the sediments of a mangrove forest on the coast of the Red Sea in Saudi Arabia. This isolate is a moderately halophilic, aerobic/facultatively anaerobic Gram-stain-negative bacterium showing optimum growth at between 30 and 40 °C, at a pH of 8.5 and with 3–5 % NaCl. The genome of R1DC25 comprises a circular chromosome that is 4 630 536 bp in length, with a DNA G+C content of 67.3 mol%. Phylogenetic analyses based on the 16S rRNA gene sequence and whole-genome multilocus sequence analysis of 120 concatenated single-copy genes revealed that R1DC25 represents a distinct lineage within the family in the order within the class . R1DC25 showing 95.8, 95.3 and 94.5 % 16S rRNA gene sequence identity with , and , respectively. The predominant quinone was Q-10, and the polar lipids were phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, as well as several distinct aminolipids and lipids. The predominant cellular fatty acids were C cyclo 8, a combination of C 7 and/or C 6 and C. On the basis of the differences in the phenotypic, physiological and biochemical characteristics from its known relatives and the results of our phylogenetic analyses, R1DC25 (=KCTC 72348;=JCM 33619;=NCCB 100699) is proposed to represent a novel species in a novel genus, and we propose the name gen. nov., sp. nov. ( subjective name derived from the abbreviation KAUST for King Abdullah University of Science and Technology; , of a mangrove).

Funding
This study was supported by the:
  • King Abdullah University of Science and Technology (Award CRG-7-3739)
    • Principle Award Recipient: DanieleDaffonchio
  • King Abdullah University of Science and Technology (Award REI/1/4483-01-01)
    • Principle Award Recipient: DanieleDaffonchio
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004806
2021-05-17
2022-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/5/ijsem004806.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004806&mimeType=html&fmt=ahah

References

  1. Prakash O, Shouche Y, Jangid K, Kostka JE. Microbial cultivation and the role of microbial resource centers in the omics era. Appl Microbiol Biotechnol 2013; 97:51–62 [View Article][PubMed]
    [Google Scholar]
  2. Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A et al. Where less may be more: how the rare biosphere pulls ecosystems strings. Isme J 2017; 11:853–862 [View Article][PubMed]
    [Google Scholar]
  3. Lewis WH, Tahon G, Geesink P, Sousa DZ, Ettema TJG. Innovations to culturing the uncultured microbial majority. Nat Rev Microbiol 20201–16
    [Google Scholar]
  4. Kaeberlein T, Lewis K, Epstein SS. Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment. Science 2002; 296:1127–1129 [View Article][PubMed]
    [Google Scholar]
  5. Bollmann A, Lewis K, Epstein SS. Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl Environ Microbiol 2007; 73:6386–6390 [View Article][PubMed]
    [Google Scholar]
  6. Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M. Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 2011; 4:293–297
    [Google Scholar]
  7. Thatoi H, Behera BC, Mishra RR, Dutta SK. Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Annals of Microbiology 2013; 63:1–19
    [Google Scholar]
  8. Arshad M, Eid EM, Hasan M. Mangrove health along the hyper-arid southern Red Sea coast of Saudi Arabia. Environ Monit Assess 2020; 192:189 [View Article][PubMed]
    [Google Scholar]
  9. Giomi F, Barausse A, Duarte CM, Booth J, Agusti S et al. Oxygen supersaturation protects coastal marine fauna from ocean warming. Sci Adv 2019; 5:eaax1814 [View Article][PubMed]
    [Google Scholar]
  10. Booth JM, Fusi M, Marasco R, Mbobo T, Daffonchio D. Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions. Sci Rep 2019; 9:3749 [View Article][PubMed]
    [Google Scholar]
  11. Booth JM, Fusi M, Marasco R, Michoud G, Fodelianakis S et al. The role of fungi in heterogeneous sediment microbial networks. Sci Rep 2019; 9:7537 [View Article][PubMed]
    [Google Scholar]
  12. Allard SM, Costa MT, Bulseco AN, Helfer V, Wilkins LGE et al. Introducing the mangrove microbiome initiative: identifying microbial research priorities and approaches to better understand, protect, and rehabilitate mangrove ecosystems. mSystems 2020; 5:1–9 [View Article][PubMed]
    [Google Scholar]
  13. Alongi DM. Mangrove-microbe-soil relations. In Kristensen E, Haese RR, Kostka JE. (editors) Interactions Between Macro- and Microorganisms in Marine Sediments 2013 pp 85–103
    [Google Scholar]
  14. Mendes L, Tsai S. Variations of bacterial community structure and composition in mangrove sediment at different depths in southeastern Brazil. Diversity 2014; 6:827–843
    [Google Scholar]
  15. Das A, Bhattacharya S, Mohammed AYH, Rajan SS. In vitro antimicrobial activity and characterization of mangrove isolates of streptomycetes effective against bacteria and fungi of nosocomial origin. Brazilian Arch Biol Technol 2014; 57:349–356
    [Google Scholar]
  16. Bhattacharyya D, Garladinne M, Lee YH. Volatile indole produced by rhizobacterium Proteus vulgaris JBLS202 stimulates growth of Arabidopsis thaliana through auxin, cytokinin, and brassinosteroid pathways. J Plant Growth Regul 2014; 34:158–168
    [Google Scholar]
  17. Lin X, Hetharua B, Lin L, Xu H, Zheng T et al. Mangrove sediment microbiome: adaptive microbial assemblages and their routed biogeochemical processes in Yunxiao mangrove national nature reserve, China. Microb Ecol 2019; 78:57–69 [View Article][PubMed]
    [Google Scholar]
  18. Nathan VK, Vijayan J, Ammini P. Comparison of bacterial diversity from two mangrove ecosystems from India through metagenomic sequencing: comparative mangrove bacterial diversity using metagenomics. Reg Stud Mar Sci 2020; 35:101184
    [Google Scholar]
  19. Sengupta S, Pramanik A, Nag S, Roy D, Bhattacharyya A. Microbial diversity and related secondary metabolite gene assortment at an estuarine mangrove ecosystem. Reg Stud Mar Sci 2020; 34:101051
    [Google Scholar]
  20. Ceccon DM, Faoro H, Lana PdaC, Souza EMde, Pedrosa FdeO. Metataxonomic and metagenomic analysis of mangrove microbiomes reveals community patterns driven by salinity and pH gradients in Paranaguá Bay, Brazil. Sci Total Environ 2019; 694:133609 [View Article][PubMed]
    [Google Scholar]
  21. Haldar S, Nazareth SW. Taxonomic diversity of bacteria from mangrove sediments of Goa: metagenomic and functional analysis. 3 Biotech 2018; 8:436 [View Article][PubMed]
    [Google Scholar]
  22. Alongi DM. Bacterial productivity and microbial biomass in tropical mangrove sediments. Microb Ecol 1988; 15:59–79 [View Article][PubMed]
    [Google Scholar]
  23. Zhang X, Hu BX, Ren H, Zhang J. Composition and functional diversity of microbial community across a mangrove-inhabited mudflat as revealed by 16S rDNA gene sequences. Sci Total Environ 2018; 633:518–528 [View Article][PubMed]
    [Google Scholar]
  24. Michelato Ghizelini A. Microbial diversity in Brazilian mangrove sediments - A mini review. Brazilian J Microbiol 2012; 43:1242–1254
    [Google Scholar]
  25. Santana CO, Melo VM, Jesus TB, Chinalia FA. Microbial community structure and ecology in sediments of a pristine mangrove forest. bioRxiv 2019814–833
    [Google Scholar]
  26. Gong B, Cao H, Peng C, Perčulija V, Tong G et al. High-throughput sequencing and analysis of microbial communities in the mangrove swamps along the coast of Beibu Gulf in Guangxi, China. Sci Rep 2019; 9:9377 [View Article][PubMed]
    [Google Scholar]
  27. Ser HL, Tan WS, Ab Mutalib NS, Yin WF, Chan KG et al. Draft genome sequence of mangrove-derived Streptomyces sp. MUSC 125 with antioxidant potential. Front Microbiol 2016; 7:1470 [View Article][PubMed]
    [Google Scholar]
  28. Lee GH, Rhee MS, Chang DH, Kwon KK, Bae KS et al. Bacillus solimangrovi sp. nov., isolated from mangrove soil. Int J Syst Evol Microbiol 2014; 64:1622–1628 [View Article][PubMed]
    [Google Scholar]
  29. Mo K, Huang H, Bao S, Hu Y. Bacillus caeni sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2020; 70:1503–1507 [View Article][PubMed]
    [Google Scholar]
  30. JWF L, Ser HL, Ab Mutalib NS, Saokaew S, Duangjai A. Streptomyces monashensis sp. nov., a novel mangrove soil actinobacterium from East Malaysia with antioxidative potential. Sci Rep 2019; 9:1–18
    [Google Scholar]
  31. Ren H, Ma H, Li H, Huang L, Luo Y. Acidimangrovimonas sediminis gen. nov., sp. nov., isolated from mangrove sediment and reclassification of Defluviimonas indica as Acidimangrovimonas indica comb. nov. and Defluviimonas pyrenivorans as Acidimangrovimonas pyrenivorans comb. nov. Int J Syst Evol Microbiol 2019; 69:2445–2451 [View Article][PubMed]
    [Google Scholar]
  32. Zheng S, Zhang D, Gui J, Wang J, Zhu X et al. Thalassotalea mangrovi sp. nov., a bacterium isolated from marine mangrove sediment. Int J Syst Evol Microbiol 2019; 69:3644–3649 [View Article][PubMed]
    [Google Scholar]
  33. Zhang D, Gui J, Zheng S, Zhu X, Wu S et al. Marisediminitalea mangrovi gen. nov., sp. nov., isolated from marine mangrove sediment, and reclassification of Aestuariibacter aggregatus as Marisediminitalea aggregata comb. nov. Int J Syst Evol Microbiol 2020; 70:457–464 [View Article][PubMed]
    [Google Scholar]
  34. An S-Y, Kanoh K, Kasai H, Goto K, Yokota A. Halobacillus faecis sp. nov., a spore-forming bacterium isolated from a mangrove area on Ishigaki Island, Japan. Int J Syst Evol Microbiol 2007; 57:2476–2479 [View Article][PubMed]
    [Google Scholar]
  35. Lee LH, Azman AS, Zainal N, Eng SK, Mutalib NS et al. Microbacterium mangrovi sp. nov., an amylolytic actinobacterium isolated from mangrove forest soil. Int J Syst Evol Microbiol 2014; 64:3513–3519 [View Article][PubMed]
    [Google Scholar]
  36. Lee LH, Azman AS, Zainal N, Eng SK, Fang CM et al. Novosphingobium malaysiense sp. nov. isolated from mangrove sediment. Int J Syst Evol Microbiol 2014; 64:1194–1201 [View Article][PubMed]
    [Google Scholar]
  37. Chen WM, Li Y-S, Young C-C, Sheu S-Y. Paracoccus mangrovi sp. nov., isolated from a mangrove. Int J Syst Evol Microbiol 2017; 67:2689–2695 [View Article][PubMed]
    [Google Scholar]
  38. Gao ZM, Xiao J, Wang XN, Ruan LW, Chen XL et al. Vibrio xiamenensis sp. nov., a cellulase-producing bacterium isolated from mangrove soil. Int J Syst Evol Microbiol 2012; 62:1958–1962 [View Article][PubMed]
    [Google Scholar]
  39. Zhao C, Gao Z, Qin Q, Ruan L. Mangroviflexus xiamenensis gen. nov., sp. nov., a member of the family Marinilabiliaceae isolated from mangrove sediment. Int J Syst Evol Microbiol 2012; 62:1819–1824 [View Article][PubMed]
    [Google Scholar]
  40. Huang XF, Liu YJ, Dong J-D, Qu L-Y, Zhang Y-Y et al. Mangrovibacterium diazotrophicum gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from a mangrove sediment, and proposal of Prolixibacteraceae fam. nov. Int J Syst Evol Microbiol 2014; 64:875–881 [View Article][PubMed]
    [Google Scholar]
  41. Yu Z, Cao Y, Zhou G, Yin J, Qiu J. Mangrovicoccus ximenensis gen. nov., sp. nov., isolated from mangrove forest sediment. Int J Syst Evol Microbiol 2018; 68:2172–2177 [View Article][PubMed]
    [Google Scholar]
  42. Liao H, Li Y, Guo X, Lin X, Lai Q et al. Mangrovitalea sediminis gen. nov., sp. nov., a member of the family Alteromonadaceae isolated from mangrove sediment. Int J Syst Evol Microbiol 2017; 67:5172–5178 [View Article][PubMed]
    [Google Scholar]
  43. Li Y, Bai S, Yang C, Lai Q, Zhang H et al. Mangrovimonas yunxiaonensis gen. nov., sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2013; 63:2043–2048 [View Article][PubMed]
    [Google Scholar]
  44. Liao H, Li Y, Lin X, Lai Q, Tian Y. Zhengella mangrovi gen. nov., sp. nov., a novel member of family Phyllobacteriaceae isolated from mangrove sediment. Int J Syst Evol Microbiol 2018; 68:2819–2825 [View Article][PubMed]
    [Google Scholar]
  45. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article][PubMed]
    [Google Scholar]
  46. Erlacher A, Cernava T, Cardinale M, Soh J, Sensen CW et al. Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmonaria L. Front Microbiol 2015; 6:53 [View Article][PubMed]
    [Google Scholar]
  47. Bollmann A, Palumbo AV, Lewis K, Epstein SS. Isolation and physiology of bacteria from contaminated subsurface sediments. Appl Environ Microbiol 2010; 76:7413–7419 [View Article][PubMed]
    [Google Scholar]
  48. Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F et al. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 2012; 7:e48479 [View Article][PubMed]
    [Google Scholar]
  49. Agarwala R, Barrett T, Beck J, Benson DA, Bollin C et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2016; 44:D7–D19 [View Article][PubMed]
    [Google Scholar]
  50. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–D596 [View Article][PubMed]
    [Google Scholar]
  51. de Bruijn FJ. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol 1992; 58:2180–2187 [View Article][PubMed]
    [Google Scholar]
  52. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 2016; 4:e2584 [View Article][PubMed]
    [Google Scholar]
  53. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article][PubMed]
    [Google Scholar]
  54. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  55. Bertini I, Hu X, Luchinat C. Global metabolomics characterization of bacteria: pre-analytical treatments and profiling. Metabolomics 2014; 10:241–249
    [Google Scholar]
  56. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  57. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. Kegg as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:D457–D462 [View Article][PubMed]
    [Google Scholar]
  58. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  59. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  60. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2019; 36:1925–1927 [View Article][PubMed]
    [Google Scholar]
  61. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  62. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  63. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed]
    [Google Scholar]
  64. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. Isme J 2017; 11:2399–2406 [View Article][PubMed]
    [Google Scholar]
  65. Anthamatten D, Hennecke H. The regulatory status of the fixL- and fixJ-like genes in Bradyrhizobium japonicum may be different from that in Rhizobium meliloti. Mol Gen Genet 1991; 225:38–48 [View Article][PubMed]
    [Google Scholar]
  66. Kathiresan K, Bingham BLL. Biology of mangroves and mangrove ecosystems. Advances in Marine Biology 2001 pp 81–251
    [Google Scholar]
  67. Mokhtari M, Ghaffar MA, Usup G, Cob ZC. Variation of sediment properties among the radial profiles of fiddler crab burrows in mangrove ecosystem. Int J Zool Res 2016; 12:1–10
    [Google Scholar]
  68. Anton A, Almahasheer H, Delgado A, Garcias-Bonet N, Carrillo-de-Albornoz P. Stunted mangrove trees in the oligotrophic central Red Sea relate to nitrogen limitation. Front Mar Sci 2020; 7:597
    [Google Scholar]
  69. Kozlowski LP. Proteome-pI: proteome isoelectric point database. Nucleic Acids Res 2017; 45:D1112–D1116 [View Article][PubMed]
    [Google Scholar]
  70. Pawlowski K, Klosse U, de Bruijn FJ. Characterization of a novel Azorhizobium caulinodans ORS571 two-component regulatory system, NtrY/NtrX, involved in nitrogen fixation and metabolism. Mol Gen Genet 1991; 231:124–138 [View Article][PubMed]
    [Google Scholar]
  71. Lemmer KC, Alberge F, Myers KS, Dohnalkova AC, Schaub RE et al. The NtrYX two-component system regulates the bacterial cell envelope. mBio 2020; 11:e00957-20 [View Article][PubMed]
    [Google Scholar]
  72. Santos-Beneit F. The PHO regulon: a huge regulatory network in bacteria. Front Microbiol 2015; 6:402 [View Article][PubMed]
    [Google Scholar]
  73. Wheatley RM, Poole PS. Mechanisms of bacterial attachment to roots. FEMS Microbiol Rev 2018; 42:448–461 [View Article][PubMed]
    [Google Scholar]
  74. Soldan R, Mapelli F, Crotti E, Schnell S, Daffonchio D et al. Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. Microbiol Res 2019; 223-225:33–43 [View Article][PubMed]
    [Google Scholar]
  75. Soussi A, Ferjani R, Marasco R, Guesmi A, Cherif H. Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential. Plant Soil 2016; 405:357–370
    [Google Scholar]
  76. Marasco R, Mapelli F, Rolli E, Mosqueira MJ, Fusi M et al. Salicornia strobilacea (synonym of Halocnemum strobilaceum) grown under different tidal regimes selects rhizosphere bacteria capable of promoting plant growth. Front Microbiol 2016; 7:1286 [View Article][PubMed]
    [Google Scholar]
  77. Vigani G, Rolli E, Marasco R, Dell'Orto M, Michoud G et al. Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H+-pumping pyrophosphatase in pepper plants. Environ Microbiol 2018; 00: [View Article][PubMed]
    [Google Scholar]
  78. Rolli E, Marasco R, Saderi S, Corretto E, Mapelli F. Root-associated bacteria promote grapevine growth: from the laboratory to the field. Plant Soil 2017; 410:369–382
    [Google Scholar]
  79. Zafar-ul-Hye M, Farooq HM, Zahir ZA, Hussain M, Hussain A. Application of ACC-deaminase containing rhizobacteria with fertilizer improves maize production under drought and salinity stress. Int J Agric Biol 2014; 16:591–596
    [Google Scholar]
  80. Mapelli F, Marasco R, Rizzi A, Baldi F, Ventura S et al. Bacterial communities involved in soil formation and plant establishment triggered by pyrite bioweathering on Arctic moraines. Microb Ecol 2011; 61:438–447 [View Article][PubMed]
    [Google Scholar]
  81. Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S et al. Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res Int 2016; 23:3984–3999 [View Article][PubMed]
    [Google Scholar]
  82. Boukhalfa H, Crumbliss AL. Chemical aspects of siderophore mediated iron transport. Biometals 2002; 15:325–339 [View Article][PubMed]
    [Google Scholar]
  83. Aladame N. Bergey’s manual of systematic bacteriology. Ann l’Institut Pasteur / Microbiol 1987; 138:146
    [Google Scholar]
  84. Bric JM, Bostock RM, Silverstone SE. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 1991; 57:535–538 [View Article][PubMed]
    [Google Scholar]
  85. Liu Y-L, Meng D, Li R-R, Gu P-F, Fan X-Y et al. Rhodoligotrophos defluvii sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2019; 69:3830–3836 [View Article][PubMed]
    [Google Scholar]
  86. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic Characterization and the Principles of Comparative Systematics. Methods for General and Molecular Microbiology Washington, DC, USA: ASM Press; 2014 pp 330–393
    [Google Scholar]
  87. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130
    [Google Scholar]
  88. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  89. Fukuda W, Yamada K, Miyoshi Y, Okuno H, Atomi H et al. Rhodoligotrophos appendicifer gen. nov., sp. nov., an appendaged bacterium isolated from a freshwater Antarctic lake. Int J Syst Evol Microbiol 2012; 62:1945–1950 [View Article][PubMed]
    [Google Scholar]
  90. Pradel N, Fardeau ML, Tindall BJ, Spring S. Anaerohalosphaera lusitana gen. nov., sp. nov., and Limihaloglobus sulfuriphilus gen. nov., sp. nov., isolated from solar saltern sediments, and proposal of Anaerohalosphaeraceae fam. nov. within the order Sedimentisphaerales. Int J Syst Evol Microbiol 2020; 70:1321–1330 [View Article][PubMed]
    [Google Scholar]
  91. Deng SK, Chen GQ, Chen Q, Cai S, Yao L et al. Rhodoligotrophos jinshengii sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2014; 64:3325–3330 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004806
Loading
/content/journal/ijsem/10.1099/ijsem.0.004806
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error