1887

Abstract

A novel Gram-staining-negative, catalase- and oxidase-positive, facultatively anaerobic and rod-shaped motile bacterial strain, designated as ZWAL4003, was isolated from mangrove sediments of the Zini Mangrove Forest, Zhangzhou City, PR China. Phylogenetic analysis based on its 16S rRNA gene sequence indicated that ZWAL4003 was grouped into a separated branch with MSSRF60 (97.38% nucleotide sequence identity) and NBRC 103148 (97.27%). The major cellular fatty acids were C (12.6%), C (17.6%), and summed feature 3 (Cω6 /C ω7, 45.6%). Its genome had a length of 4650556 bp with 42.8% DNA G+C content, and contained genes involved in the biosynthesis of bacteriocin, β-lactone, resorcinol, -acyl amino acid, and arylpolyene. The DNA–DNA hybridization and average nucleotide identity values for whole-genome sequence comparisons between ZWAL4003 and LMG 24470 were clearly below the thresholds used for the delineation of a novel species. The morphological and chemotaxonomic characteristics and the genotypic data of ZWAL4003 indicated that it represented a novel species of the genus . Its proposed name is sp. nov., and the type strain is ZWAL4003 (=KCTC 72971=MCCC 1A17474).

Funding
This study was supported by the:
  • Xiamen Ocean Research and Development Institute Co-construction Project (Award K200302)
    • Principle Award Recipient: ZhuhuaChan
  • China Ocean Mineral Resources R&D Association Program (Award No. DY135-B2-04)
    • Principle Award Recipient: RunyingZeng
  • China Ocean Mineral Resources R&D Association Program (Award No. DY135-B2-07)
    • Principle Award Recipient: RunyingZeng
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004777
2021-04-22
2024-04-19
Loading full text...

Full text loading...

References

  1. Pacini F. Osservazioni microscopiche e deduzioni patologiche sul cholera asiatico. Federigo Bencini 1854
    [Google Scholar]
  2. Thompson FL, Austin B, Swings J. The Biology of Vibrios Wiley Online Library; 2006
    [Google Scholar]
  3. Zhang X, Lin H, Wang X, Austin B. Significance of Vibrio species in the marine organic carbon cycle—A review. Sci China Earth Sci 2018; 61:1357–1368 [View Article]
    [Google Scholar]
  4. Li B, Li Y, Liu R, Xue C, Zhu X et al. Vibrio ouci sp. nov. and Vibrio aquaticus sp. nov., two marine bacteria isolated from the East China Sea. Int J Syst Evol Microbiol 2020; 70:172–179 [View Article][PubMed]
    [Google Scholar]
  5. Guerinot ML, West PA, Lee JV, Colwell RR. Vibrio diazotrophicus sp. nov., a marine nitrogen-fixing bacterium. Int J Syst Bacteriol 1982; 32:350–357 [View Article]
    [Google Scholar]
  6. Farmer J. Genus I. Vibrio Pacini 1854, 411. Bergey’s Manual of Systematic Bacteriology 2005 pp 494–546
    [Google Scholar]
  7. Poli A, Romano I, Mastascusa V, Buono L, Orlando P et al. Vibrio coralliirubri sp. nov., a new species isolated from mucus of red coral (Corallium rubrum) collected at Procida Island, Italy. Antonie van Leeuwenhoek 2018; 111:1105–1115 [View Article][PubMed]
    [Google Scholar]
  8. Oren A. Halosarcina. Bergey’s Manual of Systematics of Archaea and Bacteria 2015 pp 1–4
    [Google Scholar]
  9. Fang Y, Chen A, Dai H, Huang Y, Kan B et al. Vibrio fujianensis sp. nov., isolated from aquaculture water. Int J Syst Evol Microbiol 2018; 68:1146–1152 [View Article][PubMed]
    [Google Scholar]
  10. Pei S, Xie F, Niu S, Ma L, Zhang R et al. Brevibacterium profundi sp. nov., isolated from deep-sea sediment of the Western Pacific Ocean. Int J Syst Evol Microbiol 2020; 70:5818–5823 [View Article][PubMed]
    [Google Scholar]
  11. Rameshkumar N, Gomez-Gil B, Spröer C, Lang E, Dinesh Kumar N et al. Vibrio plantisponsor sp. nov., a diazotrophic bacterium isolated from a mangrove associated wild rice (Porteresia coarctata Tateoka). Syst Appl Microbiol 2011; 34:487–493 [View Article][PubMed]
    [Google Scholar]
  12. Lee G-E, Im W-T, Park J-S. Vibrio hannami sp. nov., isolated from seawater. Curr Microbiol 2018; 75:278–283 [View Article][PubMed]
    [Google Scholar]
  13. Sasser M. Identification of bacteria through fatty acid analysis. Methods in phytobacteriology 1990; 565:
    [Google Scholar]
  14. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  15. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:189–204 [View Article][PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  20. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  21. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  22. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article][PubMed]
    [Google Scholar]
  23. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed]
    [Google Scholar]
  24. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  25. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  26. Alongi DM, Clough BF, Dixon P, Tirendi F. Nutrient partitioning and storage in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina . Trees 2003; 17:51–60 [View Article]
    [Google Scholar]
  27. Reef R, Feller IC, Lovelock CE. Nutrition of mangroves. Tree Physiol 2010; 30:1148–1160 [View Article][PubMed]
    [Google Scholar]
  28. Echazarreta MA, Klose KE. Vibrio flagellar synthesis. Front Cell Infect Microbiol 2019; 9:131 [View Article][PubMed]
    [Google Scholar]
  29. Khan F, Tabassum N, Anand R, Kim Y-M. Motility of Vibrio spp.: regulation and controlling strategies. Appl Microbiol Biotechnol 2020; 104:1–22 [View Article][PubMed]
    [Google Scholar]
  30. Schöner TA, Gassel S, Osawa A, Tobias NJ, Okuno Y et al. Aryl polyenes, a highly abundant class of bacterial natural products, are functionally related to antioxidative carotenoids. Chem Bio Chem 2016; 17:247–253 [View Article][PubMed]
    [Google Scholar]
  31. Nicolaou KC, Rhoades D, Lamani M, Pattanayak MR, Kumar SM. Total synthesis of thailanstatin A. J Am Chem Soc 2016; 138:7532–7535 [View Article][PubMed]
    [Google Scholar]
  32. Riley MA, Wertz JE. Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 2002; 84:357–364 [View Article][PubMed]
    [Google Scholar]
  33. Robinson SL, Christenson JK, Wackett LP. Biosynthesis and chemical diversity of β-lactone natural products. Nat Prod Rep 2019; 36:458–475 [View Article][PubMed]
    [Google Scholar]
  34. Long JZ, Roche AM, Berdan CA, Louie SM, Roberts AJ, Spiegelman BM et al. Ablation of PM20D1 reveals N-acyl amino acid control of metabolism and nociception . Proc Natl Acad Sci U S A 2018; 115:E6937–E6945 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004777
Loading
/content/journal/ijsem/10.1099/ijsem.0.004777
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error