1887

Abstract

A new strain of planktonic heliozoans (ZI172) belonging to the genus (the sister group of Cryptista in Diaphoretickes), closely related to the only one known strain of (CCAP 1945/1), was studied with light microscopy and SSU rRNA gene sequencing. Morphometric data obtained from 127 cells and based on 254 measurements showed that this strain represents the smallest heliozoan (1.66–3.42 µm, av. 2.56 µm) in diameter known to date and one of the smallest free-living eukaryotes. We also did morphometry for strain CCAP 1945/1. Its cell body size is 3.20–6.47 µm (av. 4.15 µm; =141; =282). The secondary structures of hairpin 15 of the SSU rRNA molecules were reconstructed for ZI172 and CCAP 1945/1 and they were compared The possible biochemical explanation for the smaller size of the ZI172 strain, which is smaller than the CCAP 1945/1 strain, is discussed, including all published electron micrographs of CCAP 1945/1. The necessary taxonomic work is also carried out. The diagnosis of is amended and the new infraspecific clade is described to include ZI172. The measurements and systematics of the enigmatic heliozoan ‘ O’Donoghue 1922 (non 1921; the biggest known heliozoan) are also discussed and it is transferred to the new genus .

Funding
This study was supported by the:
  • Russian Science Foundation (Award 20-74-10068)
    • Principle Award Recipient: VasilyV. Zlatogursky
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004776
2021-04-22
2021-05-15
Loading full text...

Full text loading...

References

  1. Yabuki A, Chao EE, Ishida K-I, Cavalier-Smith T. Microheliella maris (Microhelida ord. N.), an ultrastructurally highly distinctive new axopodial protist species and genus, and the unity of phylum Heliozoa. Protist 2012; 163:356–388 [CrossRef][PubMed]
    [Google Scholar]
  2. Cavalier-Smith T, Chao EE, Lewis R. Multiple origins of Heliozoa from flagellate ancestors: new cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista, Hacrobia and Chromista. Mol Phylogenet Evol 2015; 93:331–362 [CrossRef][PubMed]
    [Google Scholar]
  3. Cavalier-Smith T, Chao EE, Lewis R. Multigene phylogeny and cell evolution of chromist infrakingdom Rhizaria: contrasting cell organisation of sister phyla Cercozoa and Retaria. Protoplasma 2018; 255:1517–1574 [CrossRef][PubMed]
    [Google Scholar]
  4. Yazaki E, Imaizumi A, Kume K, Shiratori T, Hashimoto T. Phylogenomic analysis assessing the position of “orphans” including Microheliella maris. VIII European Congress of Protistology - ISOP joint meeting. Rome • Italy. 28 July • 2 August 2019. Program. 2019; p. 27. http://web.archive.org/web/20200913042458/http://ecop2019.org/wp-content/uploads/2019/09/ABSTRACT-talks.pdf .
  5. Yazaki E, Imaizumi A, Kume K, Shiratori T, Hashimoto T. P-008 Systematic position of Microheliella maris inferred by phyllogenetic analysis. Symbio 2019 Japan Symbiotic Biology Society 3rd Conference Abstracts rel.2. November 19-20, 2019 RIKEN Yokohama Campus. 2019; p. 26 [in Japanese]. http://web.archive.org/web/20200913074608/https://drive.google.com/file/d/12T5yZrhjnKVNjYiJjBpG0B7PvHaRgV3-/preview; sites.google.com/site/japansymbiosis/過去の大会/Symbio2019/abstract .
  6. Yazaki E, Imaizumi A, Kume K, Shiratori T, Hashimoto T et al. Phylogenetic osition and mitochondrial genome of the endoheliozoan Microheliella maris . Jpn J Psychol 2020; 68:25–72
    [Google Scholar]
  7. Cavalier-Smith T, Chao EE-Y. Molecular phylogeny of centrohelid heliozoa, a novel lineage of bikont eukaryotes that arose by ciliary loss. J Mol Evol 2003; 56:387–396 [CrossRef][PubMed]
    [Google Scholar]
  8. Cavalier-Smith T. Symbiogenesis: mechanisms, evolutionary consequences, and systematic implications. Annu Rev Ecol Evol Syst 2013; 44:145–172 [CrossRef]
    [Google Scholar]
  9. Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol 2019; 66:4–119 [CrossRef][PubMed]
    [Google Scholar]
  10. Zlatogursky VV. Three new freshwater species of centrohelid heliozoans: Acanthocystis crescenta sp. nov., A. kirilli sp. nov., and Choanocystis minima sp. nov. Eur J Protistol 2010; 46:159–163 [CrossRef][PubMed]
    [Google Scholar]
  11. O’Donoghue CH. On a new Heliozoon from Vancouver Island. Can Field-Nat 1922; 35:101–102
    [Google Scholar]
  12. Archer W. Raphidiophrys viridis. Quart J Microscop Sci 1867; 7:178–179
    [Google Scholar]
  13. Cavalier-Smith T, von der Heyden S, Heyden S. Molecular phylogeny, scale evolution and taxonomy of centrohelid heliozoa. Mol Phylogenet Evol 2007; 44:1186–1203 [CrossRef][PubMed]
    [Google Scholar]
  14. Galtier N, Gouy M, Gautier C. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 1996; 12:543–548 [CrossRef][PubMed]
    [Google Scholar]
  15. Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010; 27:221–224 [CrossRef][PubMed]
    [Google Scholar]
  16. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  17. Criscuolo A, Gribaldo S. BMGE (block mapping and Gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 2010; 10:210 [CrossRef][PubMed]
    [Google Scholar]
  18. States D, Gish W, Altschul S. Improved sensitivity of nucleic acid database searches using application-specific scoring matrices. Methods 1991; 3:66–70 [CrossRef]
    [Google Scholar]
  19. Shɨshkin Y, Drachko D, Klimov VI, Zlatogursky VV. Yogsothoth knorrus gen. n., sp. n. and Y. carteri sp. n. (Yogsothothidae fam. n., Haptista, Centroplasthelida), with notes on evolution and systematics of centrohelids. Protist 2018; 169:682–696 [CrossRef][PubMed]
    [Google Scholar]
  20. Darty K, Denise A, Ponty Y. Varna: interactive drawing and editing of the RNA secondary structure. Bioinformatics 2009; 25:1974–1975 [CrossRef][PubMed]
    [Google Scholar]
  21. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003; 31:3406–3415 [CrossRef][PubMed]
    [Google Scholar]
  22. Friberg U, Graf W, Morsing C. Histological fixatives with methyl alcohol as base. Acta Anat 1951; 12:383–389 [CrossRef][PubMed]
    [Google Scholar]
  23. Eisenberg BR, Mobley BA. Size changes in single muscle fibers during fixation and embedding. Tissue Cell 1975; 7:383–387 [CrossRef][PubMed]
    [Google Scholar]
  24. Becker T, Armache J-P, Jarasch A, Anger AM, Villa E et al. Structure of the no-go mRNA decay complex Dom34-Hbs1 bound to a stalled 80S ribosome. Nat Struct Mol Biol 2011; 18:715–720 [CrossRef][PubMed]
    [Google Scholar]
  25. Doma MK, Parker R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 2006; 440:561–564 [CrossRef][PubMed]
    [Google Scholar]
  26. Pandit RA, Svasti S, Sripichai O, Munkongdee T, Triwitayakorn K et al. Association of SNP in exon 1 of HBS1L with hemoglobin F level in beta0-thalassemia/hemoglobin E. Int J Hematol 2008; 88:357–361 [CrossRef][PubMed]
    [Google Scholar]
  27. Galanello R, Sanna S, Perseu L, Sollaino MC, Satta S et al. Amelioration of Sardinian beta0 thalassemia by genetic modifiers. Blood 2009; 114:3935–3937 [CrossRef][PubMed]
    [Google Scholar]
  28. Nuinoon M, Makarasara W, Mushiroda T, Setianingsih I, Wahidiyat PA et al. A genome-wide association identified the common genetic variants influence disease severity in beta0-thalassemia/hemoglobin E. Hum Genet 2010; 127:303–314 [CrossRef][PubMed]
    [Google Scholar]
  29. Sharma IM, Rappé MC, Addepalli B, Grabow WW, Zhuang Z et al. A metastable rRNA junction essential for bacterial 30S biogenesis. Nucleic Acids Res 2018; 46:5182–5194 [CrossRef][PubMed]
    [Google Scholar]
  30. Cavalier-Smith T. Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. Protoplasma 2018; 255:297–357 [CrossRef][PubMed]
    [Google Scholar]
  31. Mereschkowsky C. IX.— On Wagnerella, a new genus of sponge nearly allied to the Physemaria of Ernst Häckel. Ann Mag Nat Hist 1878; 1:70–77 [CrossRef]
    [Google Scholar]
  32. Febvre-Chevalier C. Hedraiophrys hovassei, morphologie, biologie et cytologie. Protistologica 1973; 9:503–520
    [Google Scholar]
  33. Sassaki C. Untersuchungen über Gymnosphaera albida, eine neue marine Heliozoe. Jenaische Zeitschrift für Naturwissenschaft 1883; 28 [21 in Neue Folge :45–52
    [Google Scholar]
  34. Febvre-Chevalie C. Behaviour and cytology of Actinocoryne contractilis nov. gen., nov. sp., a new stalked Heliozoan (Centrohelidia). J. Mar. Biol. Assoc 1980; 60:909–928
    [Google Scholar]
  35. Tolkien JRR. The Return of the King (Ch. 9 The Last Debate, 1st ed. Ruskin House, Museum Street, London: George Allen & Unwin Ltd; 1955 p pp416
    [Google Scholar]
  36. Cameron Stevenson J. Edith and Cyril Berkeley — an appreciation. J Fish Res Board Can 1971; 28:1360–1364
    [Google Scholar]
  37. Zuelzer M. Bau und Entwicklung von Wagnerella borealis Mereschk. Arch Protistenkd 1909; 17:135–202
    [Google Scholar]
  38. Leontis NB, Westhof E. Geometric nomenclature and classification of RNA base pairs. RNA 2001; 7:499–512 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004776
Loading
/content/journal/ijsem/10.1099/ijsem.0.004776
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error