1887

Abstract

Strains LMG 1744, LMG 1745, LMG 31484, LMG 1764 and R-71646 were isolated from rotting fruits and fermented food products. A phylogenomic analysis based on 107 single-copy core genes revealed that they grouped in a lineage comprising , , , and . OrthoANIu and digital DNA hybridization analyses demonstrated that these five strains represented three novel species, which could be differentiated from the type strains of closely related species by multiple phenotypic characteristics. We therefore propose to classify strains LMG 1744 and LMG 1745 in the novel species sp. nov., with LMG 1744 (=CECT 30141) as the type strain; to classify strain LMG 31484 as the novel species sp. nov., with LMG 31484 (=CECT 30132) as the type strain; and to classify strains LMG 1764 and R-71646 in the novel species sp. nov., with LMG 1764 (=CECT 30140) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004751
2021-03-12
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/3/ijsem004751.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004751&mimeType=html&fmt=ahah

References

  1. Asai T, Shoda K. The taxonomy of Acetobacter and allied oxidative bacteria. J Gen Appl Microbiol 1958; 4:289–311 [View Article]
    [Google Scholar]
  2. Hommel RK. Gluconobacter. In Batt CA, Tortorello ML. (editors) Encyclopedia of Food Microbiology, 2nd ed. Oxford: Academic Press; 2014 pp 99–105
    [Google Scholar]
  3. Battey AS, Schaffner DW. Modelling bacterial spoilage in cold-filled ready to drink beverages by Acinetobacter calcoaceticus and Gluconobacter oxydans . J Appl Microbiol 2001; 91:237–247 [View Article][PubMed]
    [Google Scholar]
  4. Gosselé F, Swings J, Kersters K, Pauwels P, De Ley J. Numerical analysis of phenotypic features and protein gel electrophoregrams of a wide variety of Acetobacter strains. proposal for the improvement of the taxonomy of the genus Acetobacter Beijerinck 1898, 215. Syst Appl Microbiol 1983; 4:338–368 [View Article][PubMed]
    [Google Scholar]
  5. Spitaels F, Wieme A, Balzarini T, Cleenwerck I, Van Landschoot A et al. Gluconobacter cerevisiae sp. nov., isolated from the brewery environment. Int J Syst Evol Microbiol 2014; 64:1134–1141 [View Article][PubMed]
    [Google Scholar]
  6. Malimas T, Yukphan P, Takahashi M, Muramatsu Y, Kaneyasu M et al. Gluconobacter sphaericus (Ameyama 1975) comb. nov., a brown pigment-producing acetic acid bacterium in the Alphaproteobacteria . J Gen Appl Microbiol 2008; 54:211–220 [View Article][PubMed]
    [Google Scholar]
  7. Malimas T, Yukphan P, Takahashi M, Muramatsu Y, Kaneyasu M et al. Gluconobacter roseus (ex Asai 1935) sp. nov., nom. rev., a pink-colored acetic acid bacterium in the Alphaproteobacteria . J Gen Appl Microbiol 2008; 54:119–125 [View Article][PubMed]
    [Google Scholar]
  8. Li L, Cleenwerck I, De Vuyst L, Vandamme P. Identification of acetic acid bacteria through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and report of Gluconobacter nephelii Kommanee et al. 2011 and Gluconobacter uchimurae Tanasupawat et al. 2012 as later heterotypic synonyms of Gluconobacter japonicus Malimas et al. 2009 and Gluconobacter oxydans (Henneberg 1897) De Ley 1961 (Approved Lists 1980) emend. Gosselé et al. 1983, respectively. Syst Appl Microbiol 2017; 40:123–134 [View Article][PubMed]
    [Google Scholar]
  9. Wieme AD, Spitaels F, Aerts M, De Bruyne K, Van Landschoot A et al. Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Int J Food Microbiol 2014; 185:41–50 [View Article][PubMed]
    [Google Scholar]
  10. Papalexandratou Z, Lefeber T, Bahrim B, Lee OS, Daniel H-M et al. Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa bean box fermentations, underlining the importance of these microbial species for a successful cocoa bean fermentation process. Food Microbiol 2013; 35:73–85 [View Article][PubMed]
    [Google Scholar]
  11. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article][PubMed]
    [Google Scholar]
  12. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article][PubMed]
    [Google Scholar]
  13. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  14. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  15. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  16. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  17. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  18. Ankenbrand MJ, Keller A. bcgTree: automatized phylogenetic tree building from bacterial core genomes. Genome 2016; 59:783–791 [View Article][PubMed]
    [Google Scholar]
  19. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  20. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  21. Franke IH, Fegan M, Hayward C, Leonard G, Stackebrandt E et al. Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. Int J Syst Bacteriol 1999; 49:1681–1693 [View Article][PubMed]
    [Google Scholar]
  22. Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J. Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 2002; 52:1551–1558 [View Article][PubMed]
    [Google Scholar]
  23. Asai T, Iizuka H, Komagata K. The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J Gen Appl Microbiol 1964; 10:95–126 [View Article]
    [Google Scholar]
  24. Li L, Praet J, Borremans W, Nunes OC, Manaia CM et al. Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop. Int J Syst Evol Microbiol 2015; 65:267–273 [View Article][PubMed]
    [Google Scholar]
  25. Spitaels F, Li L, Wieme A, Balzarini T, Cleenwerck I et al. Acetobacter lambici sp. nov., isolated from fermenting lambic beer. Int J Syst Evol Microbiol 2014; 64:1083–1089 [View Article][PubMed]
    [Google Scholar]
  26. Gosselé F, Swings J, De Ley J. A rapid, simple and simultaneous detection of 2-keto-, 5-keto-and 2,5-diketogluconic acids by thin-layer chromatography in culture media of acetic acid bacteria. Zentralblatt für Bakteriologie: I. Abt. Originale C: Allgemeine, angewandte und ökologische Mikrobiologie 1980; 1:178–181 [View Article]
    [Google Scholar]
  27. Lambert B, Kersters K, Gosselé F, Swings J, De Ley J. Gluconobacters from honey bees. Antonie van Leeuwenhoek 1981; 47:147–157 [View Article][PubMed]
    [Google Scholar]
  28. Swings J. Phenotypic identification of acetic acid bacteria. Identification Methods in Applied and Environmental Microbiology (The Society for Applied Bacteriology Technical Series no 29). 1992103–110
    [Google Scholar]
  29. Yukphan P, Charoenyingcharoen P, Malimas S, Muramatsu Y, Nakagawa Y et al. Gluconobacter aidae sp. nov., an acetic acid bacteria isolated from tropical fruits in Thailand. Int J Syst Evol Microbiol 2020; 70:4351–4357 [View Article][PubMed]
    [Google Scholar]
  30. Dumolin C, Aerts M, Verheyde B, Schellaert S, Vandamme T et al. Introducing SPeDE: high-throughput Dereplication and accurate determination of microbial diversity from matrix-assisted laser desorption-ionization time of flight mass spectrometry data. mSystems 2019; 4:e00437–00419 [View Article][PubMed]
    [Google Scholar]
  31. Strohalm M, Kavan D, Novák P, Volný M, Havlícek V. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 2010; 82:4648–4651 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004751
Loading
/content/journal/ijsem/10.1099/ijsem.0.004751
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error