1887

Abstract

A Gram-stain-negative, rod-shaped, and aerobic bacterium, strain 16-35-5, was isolated from Collins Glacier front soil from the Fildes Peninsula, Antarctica. The bacterium grew optimally at 28 °C, pH 7.0 and in the presence of 0–4.0 % (w/v) NaCl. On the basis of the results of 16S rRNA gene sequence phylogenetic analyses, it was concluded that 16-35-5 represented a member of the genus and had the highest sequence similarities with CFBP 3232 (96.48 %). The genome of 16-35-5 is 4.2 Mb long with a DNA G+C content of 66.3 mol%. Average nucleotide identity (ANI) value between the genomes of 16-35-5 and DSM 27981, was 85.29 %. Strain 16-35-5 had ubiquinone-8 (Q-8) as the respiratory ubiquinone. The polar lipids of 16-35-5 were consisted of phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The main fatty acids were summed feature 3 (Cω7 and/or Cω6, 25.2 %), summed feature 8 (Cω7 and/or Cω6, 12.9 %), C (35.2 %), and C cyclo (19.0 %). On the basis of the evidence presented in this study, 16-35-5 should be classified as representing a novel species of the genus , for which the name sp. nov., is proposed, with the type strain 16-35-5 (=CCTCC AB 2019325=KCTC 72915).

Funding
This study was supported by the:
  • the Chinese Polar Scientific Strategy Research Fund (Award IC201706)
    • Principle Award Recipient: FangPeng
  • Innovative Research Group Project of the National Natural Science Foundation of China (CN) (Award Grant No. 31270538)
    • Principle Award Recipient: FangPeng
  • the R&D Infrastructure and Facility Development Program of the Ministry of Science and Technology of the People’s Republic of China (Award Grant No. NIMR-2019-8)
    • Principle Award Recipient: FangPeng
  • Key Technology Research and Development Program of Shandong (CN) (Award 2018YFC1406701)
    • Principle Award Recipient: FangPeng
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004744
2021-03-16
2022-05-27
Loading full text...

Full text loading...

References

  1. Willems A, Falsen E, Pot B, Jantzen E, Hoste B et al. Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov. Int J Syst Bacteriol 1990; 40:384–398 [View Article][PubMed]
    [Google Scholar]
  2. Willems A, Goor M, Thielemans S, Gillis M, Kersters K et al. Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci . Int J Syst Bacteriol 1992; 42:107–119 [View Article][PubMed]
    [Google Scholar]
  3. Schulze R, Spring S, Amann R, Huber I, Ludwig W et al. Genotypic diversity of Acidovorax strains isolated from activated sludge and description of Acidovorax defluvii sp. nov. Syst Appl Microbiol 1999; 22:205–214 [View Article][PubMed]
    [Google Scholar]
  4. Gardan L, Dauga C, Prior P, Gillis M, Saddler GS. Acidovorax anthurii sp. nov., a new phytopathogenic bacterium which causes bacterial leaf-spot of anthurium. Int J Syst Evol Microbiol 2000; 50:235–246 [View Article][PubMed]
    [Google Scholar]
  5. Gardan L, Stead DE, Dauga C, Gillis M. Acidovorax valerianellae sp. nov., a novel pathogen of lamb's lettuce [Valerianella locusta (L.) Laterr]. Int J Syst Evol Microbiol 2003; 53:795–800 [View Article][PubMed]
    [Google Scholar]
  6. Schaad NW, Postnikova E, Sechler A, Claflin LE, Vidaver AK et al. Reclassification of subspecies of Acidovorax avenae as A. avenae (Manns 1905) emend., A. cattleyae (Pavarino, 1911) comb. nov., A. citrulli Schaad et al., 1978) comb. nov., and proposal of A. oryzae sp. nov. Syst Appl Microbiol 2008; 31:434–446 [View Article]
    [Google Scholar]
  7. Heylen K, Lebbe L, De Vos P. Acidovorax caeni sp. nov., a denitrifying species with genetically diverse isolates from activated sludge. Int J Syst Evol Microbiol 2008; 58:73–77 [View Article][PubMed]
    [Google Scholar]
  8. Choi J-H, Kim M-S, Roh SW, Bae J-W. Acidovorax soli sp. nov., isolated from landfill soil. Int J Syst Evol Microbiol 2010; 60:2715–2718 [View Article][PubMed]
    [Google Scholar]
  9. Li D, Rothballer M, Schmid M, Esperschütz J, Hartmann A. Acidovorax radicis sp. nov., a wheat-root-colonizing bacterium. Int J Syst Evol Microbiol 2011; 61:2589–2594 [View Article][PubMed]
    [Google Scholar]
  10. Vaneechoutte M, Janssens M, Avesani V, Delmée M, Deschaght P. Description of Acidovorax wautersii sp. nov. to accommodate clinical isolates and an environmental isolate, most closely related to Acidovorax avenae . Int J Syst Evol Microbiol 2013; 63:2203–2206 [View Article][PubMed]
    [Google Scholar]
  11. Chun S-J, Cui Y, Ko S-R, Lee H-G, Srivastava A et al. Acidovorax lacteus sp. nov., isolated from a culture of a bloom-forming cyanobacterium (Microcystis sp.). Antonie van Leeuwenhoek 2017; 110:1199–1205 [View Article][PubMed]
    [Google Scholar]
  12. Chaudhary DK, Kim J. Acidovorax monticola sp. nov., isolated from soil. Antonie van Leeuwenhoek 2018; 111:1925–1934 [View Article][PubMed]
    [Google Scholar]
  13. Singleton DR, Lee J, Dickey AN, Stroud A, Scholl EH et al. Polyphasic characterization of four soil-derived phenanthrene-degrading Acidovorax strains and proposal of Acidovorax carolinensis sp. nov. Syst Appl Microbiol 2018; 41:460–472 [View Article][PubMed]
    [Google Scholar]
  14. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  15. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  16. Chun J, Lee J-H, Jung Y, Kim M, Kim S et al. Eztaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 2007; 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  21. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  24. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  25. Doetsch RN. Determinative methods of light microscopy. Man Methods Gen Bacteriol 198121–33
    [Google Scholar]
  26. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  27. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article][PubMed]
    [Google Scholar]
  28. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press; 1974
    [Google Scholar]
  29. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496 [View Article][PubMed]
    [Google Scholar]
  30. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article]
    [Google Scholar]
  31. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  32. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  33. Kates M. Techniques of Lipidology Isolation, Analysis and Identification of Lipids, 2nd ed. Amsterdam: Elsevier; 1986 pp 106–107–106–241
    [Google Scholar]
  34. Roberts RJ, Carneiro MO, Schatz MC. The advantages of SMRT sequencing. Genome Biol 2013; 14:405 [View Article][PubMed]
    [Google Scholar]
  35. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article][PubMed]
    [Google Scholar]
  36. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k -mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article]
    [Google Scholar]
  37. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  38. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  39. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  40. Zuo G, Hao B. CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genomics Proteomics Bioinformatics 2015; 13:321–331 [View Article][PubMed]
    [Google Scholar]
  41. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004744
Loading
/content/journal/ijsem/10.1099/ijsem.0.004744
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error