1887

Abstract

Strains of the genus associated with agronomically important crops such as soybean () are increasingly studied; however, information about symbionts of wild species is scarce. Australia is a genetic centre of wild species and we performed a polyphasic analysis of three strains—CNPSo 4010, CNPSo 4016, and CNPSo 4019—trapped from Western Australian soils with , and , respectively. The phylogenetic tree of the 16S rRNA gene clustered all strains into the superclade; strains CNPSo 4010 and CNPSo 4016 had CCBAU 10071 as the closest species, whereas strain CNPSo 4019 was closer to LMG 18230. The multilocus sequence analysis (MLSA) with five housekeeping genes—, , , and —confirmed the same clusters as the 16S rRNA phylogeny, but indicated low similarity to described species, with nucleotide identities ranging from 93.6 to 97.6% of similarity. Considering the genomes of the three strains, the average nucleotide identity and digital DNA–DNA hybridization values were lower than 94.97 and 59.80 %, respectively, with the closest species. In the phylogeny, strains CNPSo 4010 and CNPSo 4019 grouped with and , respectively, while strain CNPSo 4016 was positioned separately from the all symbiotic species. Other genomic (BOX-PCR), phenotypic and symbiotic properties were evaluated and corroborated with the description of three new lineages of . We propose the names of sp. nov. for CNPSo 4010 (=WSM 4802=LMG 31645) isolated from , sp. nov. for CNPSo 4016 (=WSM 4801=LMG 31649) isolated from and sp. nov. for CNPSo 4019 (=WSM 4799=LMG 31650) isolated from .

Funding
This study was supported by the:
  • INCT - Plant-Growth Promoting Microorganisms for Agricultural Sustainability and Environmental Responsibility (Award CNPq 465133/2014-2, Fundação Araucária-STI 043/2019, CAPES)
    • Principle Award Recipient: MariangelaHungria
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004742
2021-03-12
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/3/ijsem004742.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004742&mimeType=html&fmt=ahah

References

  1. Dixon R, Kahn D. Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2004; 2:621–631 [View Article][PubMed]
    [Google Scholar]
  2. De Bruijn FJ. Biological nitrogen fixation. In Lugtenberg B. editor Principles of Plant-Microbe Interactions: Microbes for Sustainable Agriculture, 1st ed. Switzerland: Springer International Publishing; 2015 pp 1–448
    [Google Scholar]
  3. Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ. Bacterial associations with legumes. CRC Crit Rev Plant Sci 2015; 34:17–42
    [Google Scholar]
  4. Mus F, Crook MB, Garcia K, Garcia Costas A, Geddes BA et al. Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 2016; 82:3698–3710 [View Article][PubMed]
    [Google Scholar]
  5. Ormeño-Orrillo E, Hungria M, Martinez-Romero E. Dinitrogen-fixing prokaryotes. In Rosenberg E, DeLong E, Stackebrandt E, Lory S, Thompson F. (editors) The Prokaryotes: Prokaryotic Physiology and Biochemistry, 4th ed. Berlin Heidelberg: Springer-Verlag; 2013 pp 427–451
    [Google Scholar]
  6. Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant Soil 2014; 378:1–33
    [Google Scholar]
  7. Hungria M, Loureiro MF, Mendes IC, Campo RJ, Graham PH. Inoculant preparation, production and application. In Werner D, Newton WE. (editors) Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment, 4th ed. Dordrecht, The Netherlands: Springer; 2005 pp 223–246
    [Google Scholar]
  8. Hungria M, Mendes IC. Nitrogen fixation with soybean: the perfect symbiosis?. In de Bruijn FJ. editor Biological Nitrogen Fixation John Wiley & Sons, Inc; 2015 pp 1009–1023
    [Google Scholar]
  9. Xu LM, Ge C, Cui Z, Li J, Fan H. Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int J Syst Bacteriol 1995; 45:706–711 [View Article][PubMed]
    [Google Scholar]
  10. Wang JY, Wang R, Zhang YM, Liu HC, Chen WF et al. Bradyrhizobium daqingense sp. nov., isolated from soybean nodules. Int J Syst Evol Microbiol 2013; 63:616–624 [View Article][PubMed]
    [Google Scholar]
  11. Yu X, Cloutier S, Tambong JT, Bromfield ESP. Bradyrhizobium ottawaense sp. nov., a symbiotic nitrogen fixing bacterium from root nodules of soybeans in Canada. Int J Syst Evol Microbiol 2014; 64:3202–3207 [View Article][PubMed]
    [Google Scholar]
  12. Menna P, Hungria M, Barcellos FG, Bangel EV, Hess PN et al. Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst Appl Microbiol 2006; 29:315–332 [View Article][PubMed]
    [Google Scholar]
  13. Hungria M, Menna P, Marçon Delamuta JR. Bradyrhizobium, the ancestor of all rhizobia: phylogeny of housekeeping and nitrogen-fixation genes. In Bruijn FJ. editor Biological Nitrogen Fixation New Jersey: Wiley, Sons, Inc; 2015 pp 191–202
    [Google Scholar]
  14. Sprent JI, Ardley J, James EK. Biogeography of nodulated legumes and their nitrogen-fixing symbionts. New Phytol 2017; 215:40–56 [View Article][PubMed]
    [Google Scholar]
  15. Klepa MS, Urquiaga MCdeO, Somasegaran P, Delamuta JRM, Ribeiro RA et al. Bradyrhizobium niftali sp. nov., an effective nitrogen-fixing symbiont of partridge pea [Chamaecrista fasciculata (Michx.) Greene], a native caesalpinioid legume broadly distributed in the USA. Int J Syst Evol Microbiol 2019; 69:3448–3459 [View Article][PubMed]
    [Google Scholar]
  16. Ferraz Helene LC, O'Hara G, Hungria M, Helene LCF, O’Hara G. Characterization of Bradyrhizobium strains indigenous to Western Australia and South Africa indicates remarkable genetic diversity and reveals putative new species. Syst Appl Microbiol 2020; 43:126053 [View Article][PubMed]
    [Google Scholar]
  17. Pueppke SG. Nodulating associations among rhizobia and legumes of the genus Glycine subgenus Glycine . Plant an 1988; 109:189–193
    [Google Scholar]
  18. Hungria M, Franchini JC, Campo RJ, Graham PH. The importance of nitrogen fixation to soybean cropping in South America. In Werner D, Newton WE. (editors) Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment, 4th ed. Dordrecht, The Netherlands: Springer; 2005 pp 25–39
    [Google Scholar]
  19. Pfeil BEA, Craven LAB, Brown A, Murray BGC, Doyle JJA. Three new species of northern Australian Glycine (Fabaceae, Phaseolae), G. gracei, G. montis-douglas and G. syndetika . Aust Syst Bot 2006; 19:245–258
    [Google Scholar]
  20. Hermann FJ. A Revision of the Genus Glycine and Its Immediate Allies Washiton, DC: U.S.D.A. Agricultural Research Service; 1962 p 79
    [Google Scholar]
  21. González-Orozco CE, Brown AH, Knerr N, Miller JT, Doyle JJ. Hotspots of diversity of wild Australian soybean relatives and their conservation in situ. Conserv Genet 2012; 13:1269–1281
    [Google Scholar]
  22. Doyle JJ, Doyle JJ, Doyle JL, Rauscher JT, Brown AHD. Diploid and polyploid reticulate evolution throughout the history of the perennial soybeans (Glycine subgenus Glycine). New Phytol 2003; 161:121–132
    [Google Scholar]
  23. Stajsic V. Flora of Victoria [Internet]. Glycine clandestina J.C.Wendl. Twining Glycine. 2018 [cited 2020 Oct 27]. Available from: https://vicflora.rbg.vic.gov.au/flora/taxon/4441818f-b0dc-40a4-b2ec-268db551d025 .
  24. Herbarium Western Australia FloraBase—the Western Australian Flora. [Internet]. Glycine tabacina (Labill.) Benth. Glycine Pea. 1998 [cited 2020 Oct 27]. Available from: https://florabase.dpaw.wa.gov.au/browse/profile/3941 .
  25. Hungria M, O’Hara GW, Zilli JE, Araujo RS, Deaker R et al. Isolation and growth of rhizobia. In Howieson JG, Dilworth MJ. (editors) Working with Rhizobia Canberra: Australian Centre for International Agriculture Reserch (ACIAR); 2016 pp 39–60
    [Google Scholar]
  26. Delamuta JRM, Ribeiro RA, Araújo JLS, Rouws LFM, Zilli Jerri Édson et al. Bradyrhizobium stylosanthis sp. nov., comprising nitrogen-fixing symbionts isolated from nodules of the tropical forage legume Stylosanthes spp. Int J Syst Evol Microbiol 2016; 66:3078–3087 [View Article][PubMed]
    [Google Scholar]
  27. Stepkowski T, Moulin L, Krzyzańska A, McInnes A, Law IJ et al. European origin of Bradyrhizobium populations infecting lupins and serradella in soils of Western Australia and South Africa. Appl Environ Microbiol 2005; 71:7041–7052 [View Article][PubMed]
    [Google Scholar]
  28. Delamuta JRM, Menna P, Ribeiro RA, Hungria M. Phylogenies of symbiotic genes of Bradyrhizobium symbionts of legumes of economic and environmental importance in Brazil support the definition of the new symbiovars pachyrhizi and sojae. Syst Appl Microbiol 2017; 40:254–265 [View Article][PubMed]
    [Google Scholar]
  29. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  30. Schwarz G. Estimating the dimension of a model. Ann Stat 1978; 6:461–464
    [Google Scholar]
  31. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Evol Genet Anal 2016; 33:1870–1874
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  33. Hedges SB. The number of replications needed for accurate estimation of the bootstrap P value in phylogenetic studies. Mol Biol Evol 1992; 9:366–369 [View Article][PubMed]
    [Google Scholar]
  34. Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010; 27:221–224 [View Article][PubMed]
    [Google Scholar]
  35. Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  36. Menna P, Barcellos FG, Hungria M. Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. Int J Syst Evol Microbiol 2009; 59:2934–2950
    [Google Scholar]
  37. Delamuta JRM, Ribeiro RA, Ormeño-Orrillo E, Melo IS, Martínez-Romero E et al. Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. Int J Syst Evol Microbiol 2013; 63:3342–3351 [View Article][PubMed]
    [Google Scholar]
  38. Ferraz Helene LC, Marçon Delamuta JR, Augusto Ribeiro R, Ormeño-Orrillo E, Antonio Rogel M et al. Bradyrhizobium viridifuturi sp. nov., encompassing nitrogen-fixing symbionts of legumes used for green manure and environmental services. Int J Syst Evol Microbiol 2015; 65:4441–4448 [View Article][PubMed]
    [Google Scholar]
  39. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  40. Delamuta JRM, Ribeiro RA, Ormeño-Orrillo E, Parma MM, Melo IS et al. Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov., nitrogen-fixing symbionts of tropical forage legumes. Int J Syst Evol Microbiol 2015; 65:4424–4433 [View Article][PubMed]
    [Google Scholar]
  41. Helene LCF, Delamuta JRM, Ribeiro RA, Hungria M. Bradyrhizobium mercantei sp. nov., a nitrogen-fixing symbiont isolated from nodules of Deguelia costata (syn. Lonchocarpus costatus). Int J Syst Evol Microbiol 2017; 67:1827–1834 [View Article][PubMed]
    [Google Scholar]
  42. Urquiaga MCdeO, Klepa MS, Somasegaran P, Ribeiro RA, Delamuta JRM et al. Bradyrhizobium frederickii sp. nov., a nitrogen-fixing lineage isolated from nodules of the caesalpinioid species Chamaecrista fasciculata and characterized by tolerance to high temperature in vitro . Int J Syst Evol Microbiol 2019; 69:3863–3877 [View Article][PubMed]
    [Google Scholar]
  43. Tang J, Bromfield ESP, Rodrigue N, Cloutier S, Tambong JT. Microevolution of symbiotic Bradyrhizobium populations associated with soybeans in east North America. Ecol Evol 2012; 2:2943–2961 [View Article][PubMed]
    [Google Scholar]
  44. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T et al. Opinion: Re-evaluating prokaryotic species. Nat Rev Microbiol 2005; 3:733–739 [View Article][PubMed]
    [Google Scholar]
  45. Durán D, Rey L, Mayo J, Zúñiga-Dávila D, Imperial J et al. Bradyrhizobium paxllaeri sp. nov. and Bradyrhizobium icense sp. nov., nitrogen-fixing rhizobial symbionts of lima bean (Phaseolus lunatus L.) in Peru. Int J Syst Evol Microbiol 2014; 64:2072–2078 [View Article][PubMed]
    [Google Scholar]
  46. Helene LCF, Klepa MS, O'Hara G, Hungria M. Bradyrhizobium archetypum sp. nov., Bradyrhizobium australiense sp. nov. and Bradyrhizobium murdochi sp. nov., isolated from nodules of legumes indigenous to Western Australia. Int J Syst Evol Microbiol 2020; 70:4623–4636 [View Article][PubMed]
    [Google Scholar]
  47. Fossou RK, Pothier JF, Zézé A, Perret X. Bradyrhizobium ivorense sp. nov. as a potential local bioinoculant for Cajanus cajan cultures in Côte d'Ivoire. Int J Syst Evol Microbiol 2020; 70:1421–1430 [View Article][PubMed]
    [Google Scholar]
  48. Schultze M, Kondorosi A. Regulation of symbiotic root nodule development. Annu Rev Genet 1998; 32:33–57 [View Article][PubMed]
    [Google Scholar]
  49. Lloret L, Martínez-romero E. Evolución y filogenia de Rhizobium . Rev Latinoam Microbiol 2005; 47:43–60
    [Google Scholar]
  50. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC. How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 2007; 5:619–633 [View Article][PubMed]
    [Google Scholar]
  51. Menna P, Hungria M. Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. Int J Syst Evol Microbiol 2011; 61:3052–3067 [View Article][PubMed]
    [Google Scholar]
  52. Rogel MA, Ormeño-Orrillo E, Martinez Romero E, Romero EM. Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 2011; 34:96–104 [View Article][PubMed]
    [Google Scholar]
  53. Li YH, Wang R, Sui XH, Wang ET, Zhang XX et al. Bradyrhizobium nanningense sp. nov., Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov., isolated from effective nodules of peanut in Southeast China. Syst Appl Microbiol 2019; 42:126002 [View Article][PubMed]
    [Google Scholar]
  54. Lu JK, Dou YJ, Zhu YJ, Wang SK, Sui XH et al. Bradyrhizobium ganzhouense sp. nov., an effective symbiotic bacterium isolated from Acacia melanoxylon R. Br. nodules. Int J Syst Evol Microbiol 2014; 64:1900–1905 [View Article][PubMed]
    [Google Scholar]
  55. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:206–214
    [Google Scholar]
  56. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  57. de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E et al. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 2019; 69:1852–1863 [View Article][PubMed]
    [Google Scholar]
  58. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  59. Mahato NK, Gupta V, Singh P, Kumari R, Verma H et al. Microbial taxonomy in the era of OMICS: application of DNA sequences, computational tools and techniques. Antonie van Leeuwenhoek 2017; 110:1357–1371 [View Article][PubMed]
    [Google Scholar]
  60. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Peer J Prepr 2016; 4:e1900v1
    [Google Scholar]
  61. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14
    [Google Scholar]
  62. Yao ZY, Kan FL, Wang ET, Wei GH, Chen WX. Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 2002; 52:2219–2230 [View Article][PubMed]
    [Google Scholar]
  63. Versalovic J, Schneider M, de BFJ, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 1994; 5:25–40
    [Google Scholar]
  64. Chibeba AM, Kyei-boahen S, Guimarães MF, Nogueira MA, Hungria M. Isolation, Characterization and Selection of Indigenous Bradyrhizobium Strains with Outstanding Symbiotic Performance to Increase Soybean Yields in Mozambique 246 Agric Ecosyst Environ. Elsevier; 2017 pp 291–305
    [Google Scholar]
  65. Sneath P, Sokal R. Numerical Taxonomy: the Principles and Practice of Numerical Classification San Francisco: Freeman; 1973 p 573
    [Google Scholar]
  66. Jaccard P. The distribution of flora in the alpine zone. New Phytol 1912; 11:37–50
    [Google Scholar]
  67. Hymowitz T. On the domestication of the soybean. Econ Bot 1970; 24:408–421
    [Google Scholar]
  68. Hymowitx T, Newell CA. Taxonomy of the genus Glycine, domestication and uses of soybeans. Econ Bot 1981; 35:272–288
    [Google Scholar]
  69. Ruiz Sainz JE, Zhou JC, Rodriguez-Navarro D-N, Vinardell JM, Thomas-Oates JE. Soybean cultivation and BNF in China. In Werner D, Newton WE. (editors) Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment Springer; 2005 pp 68–85
    [Google Scholar]
  70. Hymowitz T, Singh RJ, Larkin RP. Long-distance dispersal: the case for the allopolyploid glycine tabacina (Labill.) Benth. and G. tomentella Hayata in the West-Central Pacific. Micronesica 1990; 23:5–13
    [Google Scholar]
  71. Sniderman JMK, Jordan GJ. Extent and timing of floristic exchange between Australian and Asian rain forests. J Biogeogr 2011; 38:1445–1455
    [Google Scholar]
  72. Buerki S, Forest F, Alvarez N. Proto-South-East Asia as a trigger of early angiosperm diversification. Bot J Linn Soc 2014; 174:326–333
    [Google Scholar]
  73. Lie TA, Göktan D, Engin M, Pijnenborg J, Anlarsal E. Co-evolution of the legume-Rhizobium association. Plant Soil 1987; 100:171–181
    [Google Scholar]
  74. Man CX, Wang H, Chen WF, Sui XH, Wang ET et al. Diverse rhizobia associated with soybean grown in the subtropical and tropical regions of China. Plant Soil 2008; 310:77–87
    [Google Scholar]
  75. Li QQ, Wang ET, Zhang YZ, Zhang YM, Tian CF et al. Diversity and biogeography of rhizobia isolated from root nodules of Glycine max grown in Hebei Province, China. Microb Ecol 2011; 61:917–931 [View Article][PubMed]
    [Google Scholar]
  76. Appunu C, N'Zoue A, Laguerre G. Genetic diversity of native Bradyrhizobia isolated from soybeans (Glycine max L.) in different agricultural-ecological-climatic regions of India. Appl Environ Microbiol 2008; 74:5991–5996 [View Article][PubMed]
    [Google Scholar]
  77. Appunu C, Sasirekha N, Prabavathy VR, Nair S. A significant proportion of indigenous rhizobia from India associated with soybean (Glycine max L.) distinctly belong to Bradyrhizobium and Ensifer genera. Biol Fertil Soils 2009; 46:57–63
    [Google Scholar]
  78. Han LL, Wang ET, Han TX, Liu J, Sui WH et al. Unique community structure and biogeography of soybean rhizobia in the saline-alkaline soils of Xinjiang, China. Plant and 2009; 324:291–305
    [Google Scholar]
  79. Hungria M, Chueire Lı́gia Maria de O, Coca RG, Megı́as M. Preliminary characterization of fast growing rhizobial strains isolated from soyabean nodules in Brazil. Soil Biol Biochem 2001; 33:1349–1361 [View Article]
    [Google Scholar]
  80. Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am Jounal Clin Pathol 1966; 36:493–496
    [Google Scholar]
  81. Ormeño-Orrillo E, Martínez-Romero E. Phenotypic tests in Rhizobium species description: an opinion and (a sympatric speciation) hypothesis. Syst Appl Microbiol 2013; 36:145–147 [View Article][PubMed]
    [Google Scholar]
  82. Rosselló-Móra R, Amann R. Past and future species definitions for bacteria and archaea. Syst Appl Microbiol 2015; 38:209–216 [View Article][PubMed]
    [Google Scholar]
  83. Yates R, Howieson J, Hungria M, Bala A, O’Hara G et al. Authentication of rhizobia and assessment of the legume symbiosis in controlled plant growth systems. In Howieson J, Dilworth M. (editors) Working with Rhizobia Canberra: Australian Centre for International Agricultural Research (ACIAR); 2016 pp 73–108
    [Google Scholar]
  84. Lasse Grönemeyer J, Hurek T, Reinhold-Hurek B. Bradyrhizobium kavangense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of traditional Namibian pulses. Int J Syst Evol Microbiol 2015; 65:4886–4894 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004742
Loading
/content/journal/ijsem/10.1099/ijsem.0.004742
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error