1887

Abstract

A novel salt-tolerant alpha-proteobacterium, designated SALINAS58, was isolated from Santa Engracia hypersaline spring water in the Añana Salt Valley, Álava, Spain. The isolate was Gram-negative, aerobic, non-motile, catalase-positive, oxidase-negative, rod-shaped and formed orange colonies on marine agar. Optimal growth was observed at pH 6.0–6.5, at 30 °C and in the presence of 1% (w/v) NaCl. The main cellular fatty acids (>20%) were summed feature 8 (C 7 and/or C 6) and summed feature 3 (C 7 and/or C 6). The major respiratory quinone was ubiquinone Q-10 and the major polar lipids detected were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidilglycerol, four unidentified glycolipids and one unidentified phospholipid. Strain SALINAS58 had the highest 16S rRNA gene sequence similarity to MSW-14 (96.6%), JSSK-8 (96.5%) and SW-109 (96.5%) followed by 26DY36 (96.4%). Results of the phylogenetic analysis, based on 16S rRNA gene sequences, and phylogenetic approaches based on whole genome nucleotide differences, showed that strain SALINAS58 could be distinguished from recognized species of the genus . The genomic DNA G+C content was 61.4 mol%. Digital DNA–DNA hybridization, average nucleotide identity and average aminoacid identity values between the genome of strain SALINAS58 and MSW-14 were 18.4, 73.1 and 68.1%, respectively. Based on data from this polyphasic characterization, strain SALINAS58 (=CECT 30029=LMG 31726) is considered to be classified as representing a novel species in the genus , for which the name sp. nov. is proposed.

Funding
This study was supported by the:
  • Añana Salt Valley Foundation
    • Principle Award Recipient: JAVIERGARAIZAR
  • Vital Foundation
    • Principle Award Recipient: JAVIERGARAIZAR
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004734
2021-03-05
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/3/ijsem004734.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004734&mimeType=html&fmt=ahah

References

  1. Kwon KK, Woo J-H, Yang S-H, Kang J-H, Kang SG et al. Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. Int J Syst Evol Microbiol 2007; 57:2207–2211 [View Article]
    [Google Scholar]
  2. Xu L, Sun C, Fang C, Oren A, Xu X-W. Genomic-based taxonomic classification of the family Erythrobacteraceae . Int J Syst Evol Microbiol 2020; 70:4470–4495 [View Article][PubMed]
    [Google Scholar]
  3. Lee K-B, Liu C-T, Anzai Y, Kim H, Aono T et al. The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005; 55:1907–1919 [View Article][PubMed]
    [Google Scholar]
  4. Tonon LAC, Moreira APB, Thompson F. The Family Erythrobacteraceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes: Alphaproteobacteria and Betaproteobacteria Berlin: Springer; 2014 pp 213–235
    [Google Scholar]
  5. Xue H, Piao C-G, Guo M-W, Wang L-F, Fang W et al. Description of Altererythrobacter aerius sp. nov., isolated from air, and emended description of the genus Altererythrobacter . Int J Syst Evol Microbiol 2016; 66:4543–4548 [View Article][PubMed]
    [Google Scholar]
  6. Seo SH, Lee SD. Altererythrobacter marensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2010; 60:307–311 [View Article][PubMed]
    [Google Scholar]
  7. Jung Y-T, Park S, Lee J-S, Yoon J-H. Altererythrobacter aestiaquae sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2014; 64:3943–3949 [View Article][PubMed]
    [Google Scholar]
  8. Wu Y-H, Xu L, Meng F-X, Zhang D-S, Wang C-S et al. Altererythrobacter atlanticus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014; 64:116–121 [View Article][PubMed]
    [Google Scholar]
  9. Kim J-H, Yoon J-H, Kim W. Altererythrobacter sediminis sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 2016; 66:5424–5429 [View Article][PubMed]
    [Google Scholar]
  10. Ma H, Ren H, Huang L, Luo Y. Altererythrobacter flavus sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2018; 68:2265–2270 [View Article][PubMed]
    [Google Scholar]
  11. Park S, Jung Y-T, Park J-M, Yoon J-H. Altererythrobacter confluentis sp. nov., isolated from water of an estuary environment. Int J Syst Evol Microbiol 2016; 66:4002–4008 [View Article][PubMed]
    [Google Scholar]
  12. Jung Y-T, Park S, Lee J-S, Yoon J-H. Altererythrobacter aquiaggeris sp. nov., isolated from water of an estuary bank. Int J Syst Evol Microbiol 2017; 67:3410–3416 [View Article][PubMed]
    [Google Scholar]
  13. Park S, Jung Y-T, Choi SJ, Yoon J-H. Altererythrobacter aquaemixtae sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2017; 67:3446–3451 [View Article][PubMed]
    [Google Scholar]
  14. Fidalgo C, Rocha J, Martins R, Proença DN, Morais PV et al. Altererythrobacter halimionae sp. nov. and Altererythrobacter endophyticus sp. nov., two endophytes from the salt marsh plant Halimione portulacoides . Int J Syst Evol Microbiol 2017; 67:3057–3062 [View Article][PubMed]
    [Google Scholar]
  15. Nedashkovskaya OI, Cho S-H, Joung Y, Joh K, Kim MN et al. Altererythrobacter troitsensis sp. nov., isolated from the sea urchin Strongylocentrotus intermedius . Int J Syst Evol Microbiol 2013; 63:93–97 [View Article][PubMed]
    [Google Scholar]
  16. Yuan C-G, Chen X, Jiang Z, Chen W, Liu L et al. Altererythrobacter lauratis sp. nov. and Altererythrobacter palmitatis sp. nov., isolated from a Tibetan hot spring. Antonie van Leeuwenhoek 2017; 110:1077–1086 [View Article][PubMed]
    [Google Scholar]
  17. Yan Z-F, Lin P, Won K-H, Yang J-E, Li C-T et al. Altererythrobacter deserti sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2017; 67:3806–3811 [View Article][PubMed]
    [Google Scholar]
  18. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  19. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  20. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  23. Fitch WM, Margoliash E. Construction of phylogenetic trees. Science 1967; 155:279–284 [View Article][PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  26. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article][PubMed]
    [Google Scholar]
  27. Manchanda N, Portwood JL, Woodhouse MR, Seetharam AS, Lawrence-Dill CJ et al. GenomeQC: a quality assessment tool for genome assemblies and gene structure annotations. BMC Genomics 2020; 21:193 [View Article][PubMed]
    [Google Scholar]
  28. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  29. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  31. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe 2014; 9:111–118 [View Article]
    [Google Scholar]
  32. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article][PubMed]
    [Google Scholar]
  33. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article][PubMed]
    [Google Scholar]
  34. Jeske L, Placzek S, Schomburg I, Chang A, Schomburg D. BRENDA in 2019: a European ELIXIR core data resource. Nucleic Acids Res 2019; 47:D542–D549 [View Article][PubMed]
    [Google Scholar]
  35. Caspi R, Billington R, Keseler IM, Kothari A, Krummenacker M et al. The MetaCyc database of metabolic pathways and enzymes - a 2019 update. Nucleic Acids Res 2020; 48:D445–D453 [View Article][PubMed]
    [Google Scholar]
  36. Takai M, Kamimura K, Sugio T. A new iron oxidase from a moderately thermophilic iron oxidizing bacterium strain TI-1. Eur J Biochem 2001; 268:1653–1658 [View Article][PubMed]
    [Google Scholar]
  37. Handing JW, Ragland SA, Bharathan UV, Criss AK. The MtrCDE efflux pump contributes to survival of Neisseria gonorrhoeae from human neutrophils and their antimicrobial components. Front Microbiol 2018; 9:2688 [View Article][PubMed]
    [Google Scholar]
  38. Tokunaga H, Mitsuo K, Ichinose S, Omori A, Ventosa A et al. Salt-inducible multidrug efflux pump protein in the moderately halophilic bacterium Chromohalobacter sp. Appl Environ Microbiol 2004; 70:4424–4431 [View Article][PubMed]
    [Google Scholar]
  39. Smith AC, Hussey MA. Gram stain protocols. American Society for Microbiology-ASM Conference for Undergraduate Educators 2005
    [Google Scholar]
  40. Zapata M, Rodríguez F, Garrido JL. Separation of chlorophylls and carotenoids from marine phytoplankton:a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 2000; 195:29–45 [View Article]
    [Google Scholar]
  41. Seoane S, Zapata M, Orive E. Growth rates and pigment patterns of haptophytes isolated from estuarine waters. J Sea Res 2009; 62:286–294 [View Article]
    [Google Scholar]
  42. Matsumoto M, Iwama D, Arakaki A, Tanaka A, Tanaka T et al. Altererythrobacter ishigakiensis sp. nov., an astaxanthin-producing bacterium isolated from a marine sediment. Int J Syst Evol Microbiol 2011; 61:2956–2961 [View Article][PubMed]
    [Google Scholar]
  43. Park SC, Baik KS, Choe HN, Lim CH, Kim HJ et al. Altererythrobacter namhicola sp. nov. and Altererythrobacter aestuarii sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011; 61:709–715 [View Article][PubMed]
    [Google Scholar]
  44. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark: MIDI Inc; 1990
    [Google Scholar]
  45. MIDI Sherlock Microbial Identification System Operating Manual, version 6.1 Newark: MIDI Inc; 2008
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.004734
Loading
/content/journal/ijsem/10.1099/ijsem.0.004734
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error