1887

Abstract

The draft genome sequences of five species of named phototrophic heliobacteria in the order were determined. Whole genome phylogenetic and average nucleotide identity comparison for the heliobacteria suggests that and are closely related to one another and belong to the same genus. The three species , and all belong in the same genus, but are more divergent from and belong in a separate genus, which we suggest to be called is properly recognized to be in the same genus as is clearly unlike any other and rightfully belongs in a separate genus.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004729
2021-04-21
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/4/ijsem004729.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004729&mimeType=html&fmt=ahah

References

  1. Gest H. Discovery of the heliobacteria. Photosynth Res 1994; 41:17–21 [View Article][PubMed]
    [Google Scholar]
  2. Gest H, Favinger JL. Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll. Arch Microbiol 1983; 136:11–16 [View Article]
    [Google Scholar]
  3. Beer-Romero P, Gest H. Heliobacillus mobilis, a peritrichously flagellated anoxyphototroph containing bacteriochlorophyll g . FEMS Microbiol Lett 1987; 41:109–114 [View Article]
    [Google Scholar]
  4. Ormerod JG, Kimble LK, Nesbakken T, Torgersen YA, Woese CR et al. Heliophilum fasciatum gen. nov. sp. nov. and Heliobacterium gestii sp. nov.: endospore-forming heliobacteria from rice field soils. Arch Microbiol 1996; 165:226–234 [View Article][PubMed]
    [Google Scholar]
  5. Bryantseva IA, Gorlenko VM, Kompantseva EI, Achenbach LA, Madigan MT. Heliorestis daurensis, gen. nov. sp. nov., an alkaliphilic rod-to-coiled-shaped phototrophic heliobacterium from a Siberian soda lake. Arch Microbiol 1999; 172:167–174 [View Article][PubMed]
    [Google Scholar]
  6. Bryantseva IA, Gorlenko VM, Kompantseva EI, Tоurova TP, Kuznetsov BB et al. Alkaliphilic heliobacterium Heliorestis baculata sp. nov. and emended description of the genus Heliorestis . Arch Microbiol 2000b; 174:283–291 [View Article][PubMed]
    [Google Scholar]
  7. Asao M, Jung DO, Achenbach LA, Madigan MT. Heliorestis convoluta sp. nov., a coiled, alkaliphilic heliobacterium from the Wadi El Natroun, Egypt. Extremophiles 2006; 10:403–410 [View Article][PubMed]
    [Google Scholar]
  8. Asao M, Takaichi S, Madigan MT. Amino acid-assimilating phototrophic heliobacteria from soda lake environments: Heliorestis acidaminivorans sp. nov. and 'Candidatus Heliomonas lunata' . Extremophiles 2012; 16:585–595 [View Article][PubMed]
    [Google Scholar]
  9. Girija KR, Vinay B, Sasikala C, Ramana CV, Ch S, ChV R. Novel heliobacteria of a few semi-arid tropical soils. Ind J Microbiol 2010; 50:17–20 [View Article][PubMed]
    [Google Scholar]
  10. Stevenson AK, Kimble LK, Woese CR, Madigan MT. Characterization of new phototrophic heliobacteria and their habitats. Photosynth Res 1997; 53:1–12 [View Article]
    [Google Scholar]
  11. Heliobacteriaceae MMT. Boone D, Castenholtz RW, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. Berlin: Springer; 2001 pp 625–630
    [Google Scholar]
  12. Madigan MT, Ormerod JG. Taxonomy, physiology, and ecology of heliobacteria. In Blankenship RE, Madigan MT, Bauer CE. (editors) Anoxygenic Photosynthetic Bacteria Dordrecht: Kluwer Academic; 1995 pp 17–30
    [Google Scholar]
  13. Kimble LK, Mandelco L, Woese CR, Madigan MT. Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils. Arch Microbiol 1995; 163:259–267 [View Article]
    [Google Scholar]
  14. Kimble LK, Madigan MT. Nitrogen fixation and nitrogen metabolism in heliobacteria. Arch Microbiol 1992; 158:155–161 [View Article]
    [Google Scholar]
  15. Madigan MT. The family of Heliobacteriaceae.. The prokaryotes 4, (3rd ed.). New York: Springer; 2006 pp 951–964
    [Google Scholar]
  16. Sattley WM, Swingley WD. Chapter three - properties and evolutionary implications of the heliobacterial geThree - Properties and Evolutionary Implications of the Heliobacterial Genome. In Thomas Beatty J. editor Advances in Botanical Research 66 Academic Press; 2013 pp 67–97
    [Google Scholar]
  17. Asao M, Madigan MT. Taxonomy, phylogeny, and ecology of the heliobacteria. Photosynth Res 2010; 104:103–111 [View Article][PubMed]
    [Google Scholar]
  18. Kimble-Long LK, Madigan MT. Molecular evidence that the capacity for endosporulation is universal among phototrophic heliobacteria. FEMS Microbiol Lett 2001; 199:191–195 [View Article][PubMed]
    [Google Scholar]
  19. Sattley WM, Madigan MT, Swingley WD, Cheung PC, Clocksin KM et al. The genome of Heliobacterium modesticaldum, a phototrophic representative of the Firmicutes containing the simplest photosynthetic apparatus. J Bacteriol 2008; 190:4687–4696 [View Article][PubMed]
    [Google Scholar]
  20. Dewey ED, Stokes LM, Burchell BM, Shaffer KN, Huntington AM et al. Analysis of the complete genome of the alkaliphilic and phototrophic firmicute Heliorestis convoluta strain HHT . Microorganisms 2020; 8:313 [View Article][PubMed]
    [Google Scholar]
  21. Imhoff JF, Madigan MT. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of phototrophic bacteria. Minutes of the meetings, 27 August 2003, Tokyo, Japan. Int J Syst Evol Microbiol 2004; 54:1907–1001 [View Article]
    [Google Scholar]
  22. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article][PubMed]
    [Google Scholar]
  23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  24. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article][PubMed]
    [Google Scholar]
  25. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  26. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:pii: btv681 [View Article][PubMed]
    [Google Scholar]
  27. Tang S, Gong Y, Edwards EA. Semi-automatic in silico gap closure enabled de novo assembly of two Dehalobacter genomes from metagenomic data. PLoS One 2012; 7:e52038 [View Article][PubMed]
    [Google Scholar]
  28. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 2008; 57:758–771 [View Article][PubMed]
    [Google Scholar]
  29. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  30. Letunic I, Bork P. Interactive tree of life (iTOL) V4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article][PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article][PubMed]
    [Google Scholar]
  32. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 2011; 7:539 [View Article][PubMed]
    [Google Scholar]
  33. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  34. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009; 25:1189–1191 [View Article][PubMed]
    [Google Scholar]
  35. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  36. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article][PubMed]
    [Google Scholar]
  37. Al-Hinai MA, Jones SW, Papoutsakis ET. The Clostridium sporulation programs: diversity and preservation of endospore differentiation. Microbiol Mol Biol Rev 2015; 79:19–37 [View Article][PubMed]
    [Google Scholar]
  38. Enkh-Amgalan J, Kawasaki H, Seki T. NifH and NifD sequences of heliobacteria: a new lineage in the nitrogenase phylogeny. FEMS Microbiol Lett 2005; 243:73–79 [View Article][PubMed]
    [Google Scholar]
  39. Diender M, Stams AJM, Sousa DZ. Pathways and bioenergetics of anaerobic carbon monoxide fermentation. Front Microbiol 2015; 6:1275 [View Article][PubMed]
    [Google Scholar]
  40. Jeoung J-H, Fesseler J, Goetzl S, Dobbek H. Carbon monoxide: toxic gas and fuel for anaerobes and aerobes: carbon monoxide dehydrogenases. In Kroneck PMH, Sosa Torres ME. (editors) The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment Dordrecht: Springer; 2014 pp 37–69
    [Google Scholar]
  41. Techtmann SM, Lebedinsky AV, Colman AS, Sokolova TG, Woyke T et al. Evidence for horizontal gene transfer of anaerobic carbon monoxide dehydrogenases. Front Microbiol 2012; 3:132 [View Article][PubMed]
    [Google Scholar]
  42. Gest H, Favinger JL. Ijsem validation List no. 17. validation of publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst Bacteriol 1985; 35:223–225
    [Google Scholar]
  43. Briantseva IA, Gorlenko VM, Turova TP, Kuznetsov BB, Lysenko AM et al. Heliobacterium sulfidophilum sp. nov. and Heliobacterium undosum sp. nov.: sulfide-oxidizing heliobacteria from thermal sulfidic springs. Mikrobiologiia 2000a; 69:396–406[PubMed]
    [Google Scholar]
  44. Kimble LK, Stevenson AK, Madigan MT. Chemotrophic growth of heliobacteria in darkness. FEMS Microbiol Lett 1994; 115:51–55 [View Article][PubMed]
    [Google Scholar]
  45. Beer-Romero P, Gest H. IJSEM validation List no. 65. validation of publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst Bacteriol 1998; 48:627
    [Google Scholar]
  46. Bryantseva IA, Gorlenko VM, Turova TP, Kuznetsov BB, Lysenko AM et al. IJSEM validation List no. 78. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2001; 51:1–2
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004729
Loading
/content/journal/ijsem/10.1099/ijsem.0.004729
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error