1887

Abstract

A Gram-stain-negative, rod and rod-curved shaped motile bacterium designated strain S25 was obtained from benthic sediment collected near the Kubbar Island coral reefs south of Kuwait. Phenotypic analysis revealed that strain S25 was slightly halophilic, mesophilic and facultative anaerobic, fermenting -glucose, -ribose, -mannose, -mannitol, maltose, fructose, gentiobiose, cellobiose, melibiose, trehalose and sucrose. It was positive for oxidase and indole production and negative for arginine dihydrolase and lysine and ornithine decarboxylases. It contained C 7/C 6 (summed feature 3), C ω7 (summed feature 8) and C as the major fatty acids. Strain S25 grew optimally at 30 °C and pH 8 in the presence of 3 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA sequences revealed that strain S25 is related to species of the genus , having 99.15 % similarity to ‘’ AK16, 99.08 % to 96-237 and 98.66 % to IMCC 5001. The DNA G+C content was 48.8 mol% and the full genome analysis for the strain S25 showed that the bacterium has a genome size of 5 158 621 bp and contains 4730 predicted protein-encoding genes. The average nucleotide identity values between the S25 genome and the genomes of its nearest matches ranged between 81.39 and 94.16 %. The strain was distinguishable from the phylogenetically related genera through differences in several phenotypic properties. On the basis of the phenotypic, phylogenetic and genetic data, strain S25 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain of is S25 (=DSM 28878=LMG 28315).

Funding
This study was supported by the:
  • Kuwait University (Award SL09/14)
    • Principle Award Recipient: HudaMahmoud
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004720
2021-02-25
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/3/ijsem004720.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004720&mimeType=html&fmt=ahah

References

  1. Hewson I, Fuhrman JA. Spatial and vertical biogeography of coral reef sediment bacterial and diazotroph communities. Mar Ecol Prog Ser 2006; 306:79–86 [View Article]
    [Google Scholar]
  2. Uthicke S, McGuire K. Bacterial communities in Great barrier reef calcareous sediments: contrasting 16S rDNA libraries from nearshore and outer shelf reefs. Estuar Coast Shelf Sci 2007; 72:188–200 [View Article]
    [Google Scholar]
  3. Schöttner S, Pfitzner B, Grünke S, Rasheed M, Wild C et al. Drivers of bacterial diversity dynamics in permeable carbonate and silicate coral reef sands from the red sea. Environ Microbiol 2011; 13:1815–1826 [View Article][PubMed]
    [Google Scholar]
  4. Ruimy R, Breittmayer V, Elbaze P, Lafay B, Boussemart O et al. Phylogenetic analysis and assessment of the genera Vibrio, Photobacterium, Aeromonas, and Plesiomonas deduced from small-subunit rRNA sequences. Int J Syst Bacteriol 1994; 44:416–426 [View Article][PubMed]
    [Google Scholar]
  5. Thompson FL, Hoste B, Vandemeulebroecke K, Swings J. Reclassification of Vibrio hollisae as Grimontia hollisae gen. nov., comb. nov. Int J Syst Evol Microbiol 2003; 53:1615–1617 [View Article][PubMed]
    [Google Scholar]
  6. Singh A, Vaidya B, Khatri I, Srinivas TNR, Subramanian S et al. Grimontia indica AK16(T), sp. nov., isolated from a seawater sample reports the presence of pathogenic genes similar to Vibrio genus. PLoS One 2014; 9:e85590 [View Article][PubMed]
    [Google Scholar]
  7. Choi A, Kim K-M, Kang I, Youn S-H, Suh Y-S et al. Grimontia marina sp. nov., a marine bacterium isolated from the Yellow Sea. J Microbiol 2012; 50:170–174 [View Article][PubMed]
    [Google Scholar]
  8. Pujalte MJ, Lucena T, Rodrigo-Torres L, La Mura A, Ruvira MA et al. Grimontia celer sp. nov., from sea water. Int J Syst Evol Microbiol 2016; 66:2906–2909 [View Article][PubMed]
    [Google Scholar]
  9. Leifson E. Staining, shape and arrangement of bacterial flagella. J Bacteriol 1951; 62:377–389 [View Article][PubMed]
    [Google Scholar]
  10. Murray RGE, Doetsch RN, Robinow CF. Light microscopy. In Gephardt P, Murray RGE, Wood WA, Kreig NR. (editors) Methods for General Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  11. Atlas MR. Handbook of Microbiology Media, 3rd ed. USA: CRC press; 2004
    [Google Scholar]
  12. Smibert RM, Krieg NR. Phenotypic characterization. In Gephardt P, Murray RGE, Wood WA, Kreig NR. (editors) Methods for General Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  13. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE, USA: Microbial ID, Inc.; 1990
    [Google Scholar]
  14. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the g+ C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Evol Microbiol 1989; 39:159–167
    [Google Scholar]
  15. Rainey FA, Ward-Rainey NL, Janssen PH, Hippe H, Stackebrandt E. Clostridium paradoxum DSM 7308T contains multiple 16S rRNA genes with heterogeneous intervening sequences. Microbiology 1996; 142:2087–2095 [View Article][PubMed]
    [Google Scholar]
  16. Dereeper A, Audic S, Claverie J-M, Blanc G. BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol 2010; 10:8–6 [View Article]
    [Google Scholar]
  17. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 2008; 36:W465–W469 [View Article][PubMed]
    [Google Scholar]
  18. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  19. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article][PubMed]
    [Google Scholar]
  20. Felsenstein J. PHYLIP (phylogeny inference package), version 3.5 C. Cladistics; 1989; 5164–166
  21. Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 1997; 14:685–695 [View Article][PubMed]
    [Google Scholar]
  22. Chevenet F, Brun C, Bañuls A-L, Jacq B, Christen R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 2006; 7:439 [View Article][PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article][PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [View Article]
    [Google Scholar]
  26. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  27. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  28. Goloboff PA, Farris JS, Nixon KC. Tnt, a free program for phylogenetic analysis. Cladistics 2008; 24:774–786 [View Article]
    [Google Scholar]
  29. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary?. J Comput Biol 2010; 17:337–354 [View Article][PubMed]
    [Google Scholar]
  30. Swofford DL. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0 b10 Sunderland: Sinauer Associates; 2002
    [Google Scholar]
  31. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  32. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H, SM H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article][PubMed]
    [Google Scholar]
  33. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article]
    [Google Scholar]
  34. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  35. Chan JZ-M, Halachev MR, Loman NJ, Constantinidou C, Pallen MJ. Defining bacterial species in the genomic era: insights from the genus Acinetobacter . BMC Microbiol 2012; 12:302 [View Article][PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article][PubMed]
    [Google Scholar]
  37. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:1–14 [View Article]
    [Google Scholar]
  38. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  39. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article][PubMed]
    [Google Scholar]
  40. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article][PubMed]
    [Google Scholar]
  41. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
  42. Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 2017; 33:2946–2947 [View Article][PubMed]
    [Google Scholar]
  43. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  44. Grishin NV. Estimation of the number of amino acid substitutions per site when the substitution rate varies among sites. J Mol Evol 1995; 41:675–679 [View Article][PubMed]
    [Google Scholar]
  45. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75–5 [View Article]
    [Google Scholar]
  46. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article][PubMed]
    [Google Scholar]
  47. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article][PubMed]
    [Google Scholar]
  48. Hatosy SM, Martiny AC. The ocean as a global reservoir of antibiotic resistance genes. Appl Environ Microbiol 2015; 81:7593–7599 [View Article][PubMed]
    [Google Scholar]
  49. Al-Sarawi HA, Jha AN, Baker-Austin C, Al-Sarawi MA, Lyons BP. Baseline screening for the presence of antimicrobial resistance in E. coli isolated from Kuwait's marine environment. Mar Pollut Bull 2018; 129:893–898 [View Article][PubMed]
    [Google Scholar]
  50. Lyons BP, Barber JL, Rumney HS, Bolam TPC, Bersuder P et al. Baseline survey of marine sediments collected from the state of Kuwait: PAHs, PCBs, brominated flame retardants and metal contamination. Mar Pollut Bull 2015; 100:629–636 [View Article][PubMed]
    [Google Scholar]
  51. Al-Dahash LM, Mahmoud HM. Harboring oil-degrading bacteria: a potential mechanism of adaptation and survival in corals inhabiting oil-contaminated reefs. Mar Pollut Bull 2013; 72:364–374 [View Article][PubMed]
    [Google Scholar]
  52. Mahmoud H, Jose L. Phage and nucleocytoplasmic large viral sequences dominate coral viromes from the Arabian Gulf. Front Microbiol 2017; 8:8 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004720
Loading
/content/journal/ijsem/10.1099/ijsem.0.004720
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error