1887

Abstract

In this study, nine Gram-negative, motile and rod-shaped bacteria were isolated during a Germany-wide investigation of raw milk microbiota. The strains could be differentiated from their closest relatives by phenotypic and chemotaxonomic characterization and average nucleotide identity (ANIb) values calculated from draft genome assemblies. Strains MBT-1, MBT-8, MBT-9, MBT-10, MBT-11 and MBT-12 were related to the subgroup. Isolates MBT-2, MBT-13 and MBT-14 were closely related to DSM 16299 with an ANIb of 88.2 % and a genome-to-genome distance result of 36.0 %. The G+C content of the DNA of strains MBT-1 and MBT-2 was 60.84 and 62.48 mol%, respectively. The major fatty acids were C ω7 (summed feature 3), C and C ω7 (summed feature 8). The strains were catalase-positive, while production of urease, β-galactosidase and indole were negative. Growth occurred at 4–30 °C and at pH values of pH 6.0–8.0. Based on these results, we conclude that the strains belong to two novel species, for which the names sp. nov. and sp. nov. are proposed. The type strains are MBT-1 (=DSM 111668= LMG 31954) and MBT-2 (=DSM 111761=LMG 31955).

Funding
This study was supported by the:
  • Bundesministerium für Wirtschaft und Technologie (Award AiF 20027 N)
    • Principle Award Recipient: StefanieGieschler
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004717
2021-02-23
2021-10-25
Loading full text...

Full text loading...

References

  1. Palleroni NJ. Genus I. Pseudomonas . In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology 2, 2nd ed. East Lansing: Springer; 2005 pp 323–379
    [Google Scholar]
  2. Falgenhauer L, Schwengers O, Schmiedel J, Baars C, Lambrecht O et al. Multidrug-resistant and clinically relevant gram-negative bacteria are present in German surface waters. Front Microbiol 2019; 10:2779 [View Article][PubMed]
    [Google Scholar]
  3. Anurat P, Duangmal K, Srisuk N. Pseudomonas mangiferae sp. nov., isolated from bark of mango tree in Thailand. Int J Syst Evol Microbiol 2019; 69:3537–3543 [View Article][PubMed]
    [Google Scholar]
  4. Smith DJ, Ravichandar JD, Jain S, Griffin DW, Yu H et al. Airborne bacteria in earth’s lower stratosphere resemble taxa detected in the troposphere: results from a new NASA aircraft bioaerosol collector (ABC). Front Microbiol 2018; 9: [View Article]
    [Google Scholar]
  5. Qian Z, Hui P, Han L, Ling-Zhi Y, Bo-Shun Z et al. Serotypes and virulence genes of Pseudomonas aeruginosa isolated from mink and its pathogenicity in mink. Microb Pathog 2020; 139:103904 [View Article][PubMed]
    [Google Scholar]
  6. Chen WH, Chiu CH, Huang CH, Lin CH, Sun JH et al. Pyogenic liver abscess caused by Pseudomonas aeruginosa: clinical analysis of 20 cases. Scand J Infect Dis 2011; 43:877–882 [View Article][PubMed]
    [Google Scholar]
  7. Ribeiro Júnior JC, de Oliveira AM, Silva FG, Tamanini R, de Oliveira ALM et al. The main spoilage-related psychrotrophic bacteria in refrigerated raw milk. J Dairy Sci 2018; 101:75–83 [View Article][PubMed]
    [Google Scholar]
  8. Vithanage NR, Dissanayake M, Bolge G, Palombo EA, Yeager TR et al. Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential. Int Dairy J 2016; 57:80–90 [View Article]
    [Google Scholar]
  9. Hantsis-Zacharov E, Halpern M. Culturable psychrotrophic bacterial communities in raw milk and their proteolytic and lipolytic traits. Appl Environ Microbiol 2007; 73:7162–7168 [View Article][PubMed]
    [Google Scholar]
  10. Marchand S, Vandriesche G, Coorevits A, Coudijzer K, De Jonghe V et al. Heterogeneity of heat-resistant proteases from milk Pseudomonas species. Int J Food Microbiol 2009; 133:68–77 [View Article][PubMed]
    [Google Scholar]
  11. Martins ML, Pinto CL, Rocha RB, de Araujo EF, Vanetti MC. Genetic diversity of Gram-negative, proteolytic, psychrotrophic bacteria isolated from refrigerated raw milk. Int J Food Microbiol 2006; 111:144–148 [View Article][PubMed]
    [Google Scholar]
  12. Moore ERB, Mau M, Arnscheidt A, Böttger EC, Hutson RA et al. The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu stricto and estimation of the natural intrageneric relationships. Syst Appl Microbiol 1996; 19:478–492 [View Article]
    [Google Scholar]
  13. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas . Front Microbiol 2015; 6:214 [View Article][PubMed]
    [Google Scholar]
  14. Ait Tayeb L, Ageron E, Grimont F, Grimont PAD. Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 2005; 156:763–773 [View Article][PubMed]
    [Google Scholar]
  15. Caldera L, Franzetti L, Van Coillie E, De Vos P, Stragier P et al. Identification, enzymatic spoilage characterization and proteolytic activity quantification of Pseudomonas spp. isolated from different foods. Food Microbiol 2016; 54:142–153 [View Article]
    [Google Scholar]
  16. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010; 12:1513–1530 [View Article][PubMed]
    [Google Scholar]
  17. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article][PubMed]
    [Google Scholar]
  18. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  19. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  20. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  22. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  23. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  24. Goloboff PA, Farris JS, Nixon KC. Tnt, a free program for phylogenetic analysis. Cladistics 2008; 24:774–786 [View Article]
    [Google Scholar]
  25. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary?. J Comput Biol 2010; 17:337–354 [View Article][PubMed]
    [Google Scholar]
  26. Cummings MP. PAUP* (Phylogenetic Analysis Using Parsimony (and Other Methods)). In Hancock JohnM. editor Dictionary of Bioinformatics and Computational Biology Hoboken, NJ: Lisabon: Wiley; 2004
    [Google Scholar]
  27. Lalucat J, Mulet M, Gomila M, García-Valdés E. Genomics in bacterial Taxonomy: Impact on the genus Pseudomonas . Genes 2020; 11:139 [View Article][PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article][PubMed]
    [Google Scholar]
  29. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:132 [View Article][PubMed]
    [Google Scholar]
  30. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  31. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. blast+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article][PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  33. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article][PubMed]
    [Google Scholar]
  34. Davis JJ, Gerdes S, Olsen GJ, Olson R, Pusch GD et al. PATtyFams: protein families for the microbial genomes in the PATRIC database. Front Microbiol 2016; 7:118 [View Article][PubMed]
    [Google Scholar]
  35. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ et al. Biopython: freely available python tools for computational molecular biology and bioinformatics. Bioinformatics 2009; 25:1422–1423 [View Article][PubMed]
    [Google Scholar]
  36. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  37. Sorensen MCH, Gencay YE, Birk T, Baldvinsson SB, Jackel C et al. Primary isolation strain determines both phage type and receptors recognised by Campylobacter jejuni bacteriophages. PLoS One 2015; 10:e0116287 [View Article][PubMed]
    [Google Scholar]
  38. Ryu E. A simple method of differentiation between gram-positive and gram-negative organisms without staining. Kitasato Arch Exp Med 1940; 17:58–36
    [Google Scholar]
  39. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954; 44:301–307[PubMed]
    [Google Scholar]
  40. von Neubeck M, Baur C, Krewinkel M, Stoeckel M, Kranz B et al. Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. Int J Food Microbiol 2015; 211:57–65 [View Article][PubMed]
    [Google Scholar]
  41. Burr SE, Gobeli S, Kuhnert P, Goldschmidt-Clermont E, Frey J. Pseudomonas chlororaphis subsp. piscium subsp. nov., isolated from freshwater fish. Int J Syst Evol Microbiol 2010; 60:2753–2757 [View Article][PubMed]
    [Google Scholar]
  42. Verhille S, Baida N, Dabboussi F, Izard D, Leclerc H. Taxonomic study of bacteria isolated from natural mineral waters: proposal of Pseudomonas jessenii sp. nov. and Pseudomonas mandelii sp. nov. Syst Appl Microbiol 1999; 22:45–58 [View Article][PubMed]
    [Google Scholar]
  43. Kaminski MA, Furmanczyk EM, Sobczak A, Dziembowski A, Lipinski L. Pseudomonas silesiensis sp. nov. strain A3T isolated from a biological pesticide sewage treatmentplant and analysis of the complete genome sequence. Syst Appl Microbiol 2018; 41:13–22 [View Article][PubMed]
    [Google Scholar]
  44. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article][PubMed]
    [Google Scholar]
  45. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  46. Peix A, Rivas R, Mateos PF, Martinez-Molina E, Rodriguez-Barrueco C et al. Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro. Int J Syst Evol Microbiol 2003; 53:2067–2072 [View Article][PubMed]
    [Google Scholar]
  47. Menendez E, Ramirez-Bahena MH, Fabryova A, Igual JM, Benada O et al. Pseudomonas coleopterorum sp. nov., a cellulase-producing bacterium isolated from the bark beetle Hylesinus fraxini . Int J Syst Evol Microbiol 2015; 65:2852–2858 [View Article][PubMed]
    [Google Scholar]
  48. Moore ERB, Tindall BJ, Martins Dos Santos VAP, Pieper DH, Ramos JL. Nonmedical: Pseudomonas, 3 ed. New York: Springer; 2006 pp 646–703
    [Google Scholar]
  49. Peix A, Valverde A, Rivas R, Igual JM, Ramirez-Bahena MH et al. Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov. and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov. Int J Syst Evol Microbiol 2007; 57:1286–1290 [View Article][PubMed]
    [Google Scholar]
  50. Andersen SM, Johnsen K, Sorensen J, Nielsen P, Jacobsen CS. Pseudomonas frederiksbergensis sp. nov., isolated from soil at a coal gasification site. Int J Syst Evol Microbiol 2000; 50 Pt 6:1957–1964 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004717
Loading
/content/journal/ijsem/10.1099/ijsem.0.004717
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error