1887

Abstract

was published in the in June 2012. was published in in 2016 and validated in November 2020. In the present study, the relationship between and was re-evaluated. In the 16S rRNA gene phylogeny, was closely related to and . The type strains of and shared 99.8 % 16S rRNA gene sequence similarity, 98.5 % sequence similarity, 99.9 % sequence similarity, 98.7 % average nucleotide identity (ANI) value and 88.9 % digital DNA–DNA hybridization (dDDH) value, indicating that they represent the same species. Meanwhile, although the type strains of and also shared 99.8 % 16S rRNA gene sequence similarity, 97.1 % sequence similarity and 99.6 % sequence similarity, 94.7 % ANI and 59.1 % dDDH values indicated that they represent two different species. On the basis of the results present here, we propose Ren . 2020 as a later heterotypic synonym of Morandi . 2012.

Funding
This study was supported by the:
  • ChunTao Gu , National Natural Science Foundation of China , (Award no. 31471594)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004716
2021-02-23
2021-02-27
Loading full text...

Full text loading...

References

  1. De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W. (editors) Taxonomic Outline of the Phylum Firmicutes. Bergey’s Manual of Systematic Bacteriology New York: Springer; 2009 pp 15 17
    [Google Scholar]
  2. Fortina MG, Ricci G, Mora D, Manachini PL. Molecular analysis of artisanal Italian cheeses reveals Enterococcus italicus sp. nov. Int J Syst Evol Microbiol 2004; 54: 1717 1721 [CrossRef] [PubMed]
    [Google Scholar]
  3. Vancanneyt M, Zamfir M, Devriese LA, Lefebvre K, Engelbeen K et al. Enterococcus saccharominimus sp. nov., from dairy products. Int J Syst Evol Microbiol 2004; 54: 2175 2179 [CrossRef] [PubMed]
    [Google Scholar]
  4. Morandi S, Cremonesi P, Povolo M, Brasca M. Enterococcus lactis sp. nov., from Italian raw milk cheeses. Int J Syst Evol Microbiol 2012; 62: 1992 1996 [CrossRef] [PubMed]
    [Google Scholar]
  5. Kadri Z, Spitaels F, Cnockaert M, Praet J, El Farricha O et al. Enterococcus bulliens sp. nov., a novel lactic acid bacterium isolated from camel milk. Antonie van Leeuwenhoek 2015; 108: 1257 1265 [CrossRef] [PubMed]
    [Google Scholar]
  6. Ren X, Li M, Guo D. Enterococcus xinjiangensis sp. nov., isolated from yogurt of Xinjiang, China. Curr Microbiol 2016; 73: 374 378 [CrossRef] [PubMed]
    [Google Scholar]
  7. Oren A, Garrity GM. List of new names and new combinations that have appeared in effective publications outside of the IJSEM and are submitted for valid publication. Int J Syst Evol Microbiol 2020; 70: 5596 5600 [CrossRef] [PubMed]
    [Google Scholar]
  8. An D, Cai S, Dong X. Actinomyces ruminicola sp. nov., isolated from cattle rumen. Int J Syst Evol Microbiol 2006; 56: 2043 2048 [CrossRef] [PubMed]
    [Google Scholar]
  9. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005; 151: 2141 2150 [CrossRef] [PubMed]
    [Google Scholar]
  10. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673 4680 [CrossRef] [PubMed]
    [Google Scholar]
  11. Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 1989; 29: 170 179 [CrossRef] [PubMed]
    [Google Scholar]
  12. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. mega X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35: 1547 1549 [CrossRef] [PubMed]
    [Google Scholar]
  13. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from illumina MiSeq data. Bioinformatics 2015; 31: 587 589 [CrossRef] [PubMed]
    [Google Scholar]
  14. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19: 455 477 [CrossRef] [PubMed]
    [Google Scholar]
  15. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 1312 1313 [CrossRef] [PubMed]
    [Google Scholar]
  16. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R et al. The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res 2020; 48: D606 D612 [CrossRef] [PubMed]
    [Google Scholar]
  17. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66: 1100 1103 [CrossRef] [PubMed]
    [Google Scholar]
  18. Yoon SH, Ha S, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110: 1281 1286 [CrossRef] [PubMed]
    [Google Scholar]
  19. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2: 117 134 [CrossRef] [PubMed]
    [Google Scholar]
  20. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81 91 [CrossRef] [PubMed]
    [Google Scholar]
  21. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106: 19126 19131 [CrossRef] [PubMed]
    [Google Scholar]
  22. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68: 461 466 [CrossRef] [PubMed]
    [Google Scholar]
  23. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846 849 [CrossRef]
    [Google Scholar]
  24. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25: 1043 1055 [CrossRef] [PubMed]
    [Google Scholar]
  25. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29: 319 322 [CrossRef]
    [Google Scholar]
  26. Tak EJ, Kim HS, Lee JY, Kang W, Hyun D-W et al. Vagococcus martis sp. nov., isolated from the small intestine of a marten, Martes flavigula . Int J Syst Evol Microbiol 2017; 67: 3398 3402 [CrossRef] [PubMed]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids , MIDI Technical Note 101. Newark, DE, USA: Microbial ID Inc; 1990
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004716
Loading
/content/journal/ijsem/10.1099/ijsem.0.004716
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error