1887

Abstract

A Gram-stain-negative, aerobic, non-spore-forming, non-motile and rod-shaped bacterial strain, designated BSSL-BM3, was isolated from sand collected from a dune near the Yellow Sea, Republic of Korea, and subjected to a polyphasic taxonomic study. The neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that strain BSSL-BM3 fell within the clade comprising the type strains of species. Strain BSSL-BM3 exhibited 16S rRNA gene sequence similarity values of 98.0–99.0 % to the type strains of , , , and and of 94.2–96.7 % to the type strains of the other species. The averagenucleotide identity and digitalDNA–DNA hybridization values between strain BSSL-BM3 and the type strains of , , , and were 82.2–88.8 % and 25.0–36.5 %, respectively. The DNA G+C content of strain BSSL-BM3 from genomic sequence data was 38.75 mol%. Strain BSSL-BM3 contained MK-6 as the predominant menaquinone and iso-C 3-OH, summed feature 3 (C 7 and/or C 6) and iso-C G as the major fatty acids. The major polar lipids of strain BSSL-BM3 were phosphatidylethanolamine and two unidentified lipids. Distinguishing phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that strain BSSL-BM3 is separated from recognized species. On the basis of the data presented here, strain BSSL-BM3 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is BSSL-BM3 (=KACC 21632=NBRC 114502).

Funding
This study was supported by the:
  • Rural Development Administration (Award PJ014442)
    • Principle Award Recipient: Jung-HoonYoon
  • National Institute of Biological Resources (Award project on survey of indigenous species of Korea)
    • Principle Award Recipient: Jung-HoonYoon
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004709
2021-02-22
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/3/ijsem004709.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004709&mimeType=html&fmt=ahah

References

  1. Bernardet JF, Bernardet JF. Family I. Flavobacteriaceae Reichenbach 1992. In Krieg NR, Ludwig W, Whitman WB, Hedlund BP, Paster BJ. (editors) Bergey’s Manual of Systematic Bacteriology 4, 2nd ed. New York: Springer; 2011 pp 106–111
    [Google Scholar]
  2. Ivanova EP, Nedashkovskaya OI, Chun J, Lysenko AM, Frolova GM et al. Arenibacter gen. nov., new genus of the family Flavobacteriaceae and description of a new species, Arenibacter latericius sp. nov. Int J Syst Evol Microbiol 2001; 51:1987–1995 [View Article][PubMed]
    [Google Scholar]
  3. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article][PubMed]
    [Google Scholar]
  4. Sun F, Wang B, Du Y, Liu X, Lai Q et al. Arenibacter nanhaiticus sp. nov., isolated from marine sediment of the South China Sea. Int J Syst Evol Microbiol 2010; 60:78–83 [View Article][PubMed]
    [Google Scholar]
  5. Li A-Z, Lin L-Z, Zhang M-X, Zhu H-H. Arenibacter antarcticus sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2017; 67:4601–4605 [View Article][PubMed]
    [Google Scholar]
  6. Li A-Z, Lin L-Z, Zhang M-X, Lv Y, Zhu H-H. Arenibacter catalasegens sp. nov., isolated from marine surface sediment, and emended description of the genus Arenibacter . Int J Syst Evol Microbiol 2018; 68:758–763 [View Article][PubMed]
    [Google Scholar]
  7. Guo J, Sun J, Xu Y, Fang L, Jiao N et al. Arenibacter aquaticus sp. nov., a marine bacterium isolated from surface sea water in the South China Sea. Int J Syst Evol Microbiol 2020; 70:958–963 [View Article][PubMed]
    [Google Scholar]
  8. Nedashkovskaya OI, Suzuki M, Vysotskii MV, Mikhailov VV. Arenibacter troitsensis sp. nov., isolated from marine bottom sediment. Int J Syst Evol Microbiol 2003; 53:1287–1290 [View Article][PubMed]
    [Google Scholar]
  9. Nedashkovskaya OI, Kim SB, Han SK, Lysenko AM, Mikhailov VV et al. Arenibacter certesii sp. nov., a novel marine bacterium isolated from the green alga Ulva fenestrata . Int J Syst Evol Microbiol 2004; 54:1173–1176 [View Article][PubMed]
    [Google Scholar]
  10. Nedashkovskaya OI, Vancanneyt M, Cleenwerck I, Snauwaert C, Kim SB et al. Arenibacter palladensis sp. nov., a novel marine bacterium isolated from the green alga Ulva fenestrata, and emended description of the genus Arenibacter . Int J Syst Evol Microbiol 2006; 56:155–160 [View Article][PubMed]
    [Google Scholar]
  11. Nedashkovskaya OI, Kim SB, Lysenko AM, Lee KH, Bae KS et al. Arenibacter echinorum sp. nov., isolated from the sea urchin Strongylocentrotus intermedius . Int J Syst Evol Microbiol 2007; 57:2655–2659 [View Article][PubMed]
    [Google Scholar]
  12. Jeong SH, Jin HM, Kim JM, Jeon CO. Arenibacter hampyeongensis sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2013; 63:679–684 [View Article][PubMed]
    [Google Scholar]
  13. Yoon JH, Lee ST, Kim SB, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997; 47:111–114 [View Article]
    [Google Scholar]
  14. Yoon J-H, Kim H, Kim I-G, Kang KH, Park Y-H. Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 2003; 53:1169–1174 [View Article][PubMed]
    [Google Scholar]
  15. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  16. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  17. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  18. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  19. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H, SM H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article][PubMed]
    [Google Scholar]
  20. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  21. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  22. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [View Article][PubMed]
    [Google Scholar]
  23. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  24. Park S, Won S-M, Kim H, Park D-S, Yoon J-H. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:2969–2974 [View Article][PubMed]
    [Google Scholar]
  25. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  26. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  27. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994 pp 121–161
    [Google Scholar]
  28. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  29. Reichenbach H. The order Cytophagales . In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH. (editors) The Prokaryotes, A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. New York: Springer; 1992 pp 3631–3675
    [Google Scholar]
  30. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  31. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Mocrobiol 1987; 19:1–67
    [Google Scholar]
  32. Bruns A, Rohde M, Berthe-Corti L. Muricauda tuestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [View Article][PubMed]
    [Google Scholar]
  33. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  34. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes . In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG. (editors) The Prokaryotes Berlin: Springer; 1981 pp 1302–1331
    [Google Scholar]
  35. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 1957; 49:25–68 [View Article][PubMed]
    [Google Scholar]
  36. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968; 95:1921–1942 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004709
Loading
/content/journal/ijsem/10.1099/ijsem.0.004709
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error