1887

Abstract

A novel actinobacterium, designated strain NEAU-AAG5, was isolated from sandy soil collected from Niuwang island in Sanya, Hainan Province, PR China. The taxonomic position of the strain was investigated using a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain NEAU-AAG5 belongs to the genus and shared highest sequence similarity with NBRC 14102 (98.8 %). Strain NEAU-AAG5 grows at 20–40 °C (optimum, 28 °C), pH 6–10 (optimum, pH 7) and has NaCl tolerance of 0–3 %. The menaquinones were identified as MK-9(H) (4.2 %), MK-9(H) (49.2 %) and MK-9(H) (46.5 %). The major fatty acids were C (31.4 %), 10-methyl C (21.3 %) and C 9 (15.7 %). The polar lipids were diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositolmannoside, phosphatidylglycerol and phosphoglycolipid. The genomic DNA G+C content of strain NEAU-AAG5 based on whole genome sequences was 72.8 mol%. Digital DNA–DNA hybridization between strain NEAU-AAG5 and its closest phylogenetic neighbour, NBRC 14102, resulted in similarity value of 28.0 % (<70 %). Additionally, the average nucleotide identity was 84.2 % for NBRC 14102. On the basis of phenotypic, genotypic and phylogenetic data, strain NEAU-AAG5 can be characterized to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is NEAU-AAG5 (=JCM 33456=CCTCC AA 2019043).

Funding
This study was supported by the:
  • the National Natural Science Foundation of China (Award 31772240)
    • Principle Award Recipient: XiangjingWang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004708
2021-02-22
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/3/ijsem004708.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004708&mimeType=html&fmt=ahah

References

  1. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [View Article]
    [Google Scholar]
  2. Zhang Z, Wang Y, Ruan J. Reclassification of Thermomonospora and Microtetraspora . Int J Syst Bacteriol 1998; 48 Pt 2:411–422 [View Article][PubMed]
    [Google Scholar]
  3. Zhang Z, Kudo T, Nakajima Y, Wang Y. Clarification of the relationship between the members of the family Thermomonosporaceae on the basis of 16S rDNA, 16S-23S rRNA internal transcribed spacer and 23S rDNA sequences and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:373–383 [View Article][PubMed]
    [Google Scholar]
  4. Miyadoh S, Miyara T. Family Thermomonosporaceae. The Society for Actinomycetes (Eds) Identification Manual of Actinomycetes Tokyo: Business Center for Academic Societies; 2001. pp 281–291
    [Google Scholar]
  5. Zhao J, Guo L, Sun P, Han C, Bai L et al. Actinomadura jiaoheensis sp. nov. and Actinomadura sporangiiformans sp. nov., two novel actinomycetes isolated from muddy soil and emended description of the genus Actinomadura . Antonie van Leeuwenhoek 2015; 108:1331–1339 [View Article][PubMed]
    [Google Scholar]
  6. Zucchi TD, Kim B-Y, Bonda ANV, Goodfellow M. Actinomadura xylanilytica sp. nov., an actinomycete isolated from soil. Int J Syst Evol Microbiol 2013; 63:576–580 [View Article][PubMed]
    [Google Scholar]
  7. Songsumanus A, Kudo T, Ohkuma M, Phongsopitanun W, Tanasupawat S. Actinomadura montaniterrae sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2016; 66:3310–3316 [View Article][PubMed]
    [Google Scholar]
  8. Miyadoh S, Amano S, Tohyama H, Shomura T. Actinomadura atramentaria, a new species of the Actinomycetales . Int J Syst Bacteriol 1987; 37:342–346 [View Article]
    [Google Scholar]
  9. Wink J, Kroppenstedt RM, Seibert G, Stackebrandt E. Actinomadura namibiensis sp. nov. Int J Syst Evol Microbiol 2003; 53:721–724 [View Article][PubMed]
    [Google Scholar]
  10. He J, Xu Y, Sahu MK, Tian X-P, Nie G-X et al. Actinomadura sediminis sp. nov., a marine actinomycete isolated from mangrove sediment. Int J Syst Evol Microbiol 2012; 62:1110–1116 [View Article][PubMed]
    [Google Scholar]
  11. Qin S, Zhao G-Z, Li J, Zhu W-Y, Xu L-H et al. Actinomadura flavalba sp. nov., an endophytic actinomycete isolated from leaves of Maytenus austroyunnanensis . Int J Syst Evol Microbiol 2009; 59:2453–2457 [View Article][PubMed]
    [Google Scholar]
  12. Rachniyom H, Matsumoto A, Indananda C, Duangmal K, Takahashi Y et al. Actinomadura syzygii sp. nov., an endophytic actinomycete isolated from the roots of a jambolan plum tree (Syzygium cumini L. Skeels). Int J Syst Evol Microbiol 2015; 65:1946–1949 [View Article][PubMed]
    [Google Scholar]
  13. Promnuan Y, Kudo T, Ohkuma M, Chantawannakul P. Actinomadura apis sp. nov., isolated from a honey bee (Apis mellifera) hive, and the reclassification of Actinomadura cremea subsp. rifamycini Gauze et al. 1987 as Actinomadura rifamycini (Gauze et al. 1987) sp. nov., comb. nov. Int J Syst Evol Microbiol 2011; 61:2271–2277 [View Article][PubMed]
    [Google Scholar]
  14. Nakamura G, Isono K. A new species of Actinomadura producing a polyether antibiotic, cationomycin. J Antibiot 1983; 36:1468–1472 [View Article][PubMed]
    [Google Scholar]
  15. Oki T, Konishi M, Tomatsu K, Tomita K, Saitoh K et al. Pradimicin, a novel class of potent antifungal antibiotics. J Antibiot 1988; 41:1701–1704 [View Article][PubMed]
    [Google Scholar]
  16. Igarashi Y, Iida T, Oku N, Watanabe H, Furihata K et al. Nomimicin, a new spirotetronate-class polyketide from an actinomycete of the genus Actinomadura . J Antibiot 2012; 65:355–359 [View Article][PubMed]
    [Google Scholar]
  17. Kornsakulkarn J, Saepua S, Boonruangprapa T, Suphothina S, Thongpanchang C. New β-carboline and indole alkaloids from actinomycete Actinomadura sp. bcc 24717. Phytochem Lett 2013; 6:491–494 [View Article]
    [Google Scholar]
  18. Kroppenstedt RM, Stackebrandt E, Goodfellow M. Taxonomic revision of the Actinomycete genera Actinomadura and Microtetraspora . Syst Appl Microbiol 1990; 13:148–160 [View Article]
    [Google Scholar]
  19. Cao C, Xu T, Liu J, Cai X, Sun Y et al. Actinomadura deserti sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2018; 68:2930–2935 [View Article][PubMed]
    [Google Scholar]
  20. Lu Z, Wang L, Zhang Y, Shi Y, Liu Z et al. Actinomadura catellatispora sp. nov. and Actinomadura glauciflava sp. nov., from a sewage ditch and soil in southern China. Int J Syst Evol Microbiol 2003; 53:137–142 [View Article][PubMed]
    [Google Scholar]
  21. Abagana AY, Sun P, Liu C, Cao T, Zheng W et al. Actinomadura gamaensis sp. nov., a novel actinomycete isolated from soil in Gama, Chad. Antonie van Leeuwenhoek 2016; 109:833–839 [View Article][PubMed]
    [Google Scholar]
  22. Cao P, Liu C, Sun P, Fu X, Wang S et al. An endophytic Streptomyces sp. strain DHV3-2 from diseased root as a potential biocontrol agent against Verticillium dahliae and growth elicitor in tomato (Solanum lycopersicum). Antonie van Leeuwenhoek 2016; 109:1573–1582 [View Article][PubMed]
    [Google Scholar]
  23. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  24. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S et al. Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 2000; 50:2031–2036 [View Article][PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  28. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  29. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  30. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  31. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article][PubMed]
    [Google Scholar]
  32. Li R, Li Y, Kristiansen K, Wang J. Soap: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article][PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article][PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60–14 [View Article][PubMed]
    [Google Scholar]
  35. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  36. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  37. Wayne LG. International Committee on systematic bacteriology. Report of the AD hoc Committee on reconciliation of approaches to bacterial Systematics. Int J Syst Bacteriol 1987; 37:463–464
    [Google Scholar]
  38. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V et al. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 2009; 37:D233–D238 [View Article][PubMed]
    [Google Scholar]
  39. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 2011; 39:W339–W346 [View Article][PubMed]
    [Google Scholar]
  40. Chen L, Xiong Z, Sun L, Yang J, Jin Q. VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 2012; 40:D641–D645 [View Article][PubMed]
    [Google Scholar]
  41. Liu B, Pop M. ARDB-antibiotic resistance genes database. Nucleic Acids Res 2009; 37:D443–D447 [View Article][PubMed]
    [Google Scholar]
  42. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article][PubMed]
    [Google Scholar]
  43. Jin L, Zhao Y, Song W, Duan L, Jiang S et al. Streptomyces inhibens sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2019; 69:688–695 [View Article][PubMed]
    [Google Scholar]
  44. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57:141–145 [View Article][PubMed]
    [Google Scholar]
  45. Waksman SA. The Actinomycetes. A Summary of Current Knowledge New York: Ronald; 1967
    [Google Scholar]
  46. Waksman SA. The Actinomycetes, vol. 2, Classification, Identification and Descriptions of Genera and Species Baltimore: Williams and Wilkins; 1961
    [Google Scholar]
  47. Kelly KL. Inter-Society colour Council-National Bureau of standards Colour-Name charts illustrated with centroid colours published in US; 1964
  48. Jia F, Liu C, Wang X, Zhao J, Liu Q et al. Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae . Antonie van Leeuwenhoek 2013; 103:399–408 [View Article][PubMed]
    [Google Scholar]
  49. Zhao J, Han L, Yu M, Cao P, Li D, MY Y, DM L et al. Characterization of Streptomyces sporangiiformans sp. nov., a novel soil actinomycete with antibacterial activity against Ralstonia solanacearum . Microorganisms 2019; 7:360 [View Article][PubMed]
    [Google Scholar]
  50. Cao P, Li C, Tan K, Liu C, Xu X et al. Characterization, Phylogenetic Analyses, and Pathogenicity of Enterobacter cloacae on Rice Seedlings in Heilongjiang Province, China. Plant Dis 2020; 104:1601–1609 [View Article][PubMed]
    [Google Scholar]
  51. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  52. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  53. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales . Int J Syst Bacteriol 1993; 43:805–812 [View Article]
    [Google Scholar]
  54. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000; 30:178–182 [View Article][PubMed]
    [Google Scholar]
  55. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Actinomycete Taxonomy Special Publication 6 Society of Industrial Microbiology; 1980 pp 227–291
    [Google Scholar]
  56. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  57. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1999 pp 267–284
    [Google Scholar]
  58. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16:176–178
    [Google Scholar]
  59. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora . Antonie van Leeuwenhoek 2014; 105:307–315 [View Article][PubMed]
    [Google Scholar]
  60. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61:1165–1169 [View Article][PubMed]
    [Google Scholar]
  61. Monteiro M, Moreira N, Pinto J, Pires-Luís AS, Henrique R et al. GC-MS metabolomics-based approach for the identification of a potential VOC-biomarker panel in the urine of renal cell carcinoma patients. J Cell Mol Med 2017; 21:2092–2105 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004708
Loading
/content/journal/ijsem/10.1099/ijsem.0.004708
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error