1887

Abstract

Two strains isolated from soil samples were designated as YH-JAE5 and YH-JAE2. The isolates were facultative anaerobic, Gram-stain-variable, motile, rod-shaped bacteria. Phylogenetic analysis indicated that the isolates belonged to the genus , but the 16S rRNA gene sequence similarities were <98 % when compared with other species within the genus. Analysis of gene revealed the isolates formed a sub-cluster with . The only menaquinone identified was MK-7. The two isolates contained -diaminopimelic acid within their cell wall peptidoglycan. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phospholipid, aminophospholipids, and lipids. The major fatty acids were C anteiso and C iso. The average nucleotide identity, average amino acid identity, and digital DNA–DNA hybridization values between isolate YH-JAE5 and the most closely related reference strain ( KCTC 3758) were 81.7, 84.8 and 23.4 %, respectively. The G+C content of the genomic DNA was 47.4 mol%. Thus, the polyphasic data revealed that YH-JAE2 (=KCTC 43239=JCM 34435) and YH-JAE5 (=KCTC 43059=JCM 33533) represent a new species. The name sp. nov. is proposed.

Funding
This study was supported by the:
  • National Research Foundation of Korea (Award 2018R1A2B5002239)
    • Principle Award Recipient: Joong-KiKook
  • Ministry of Science, ICT and Future Planning
    • Principle Award Recipient: YoungHyo Chang
  • National Research Foundation of Korea (Award 2013M3A9A5076601)
    • Principle Award Recipient: YoungHyo Chang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004707
2021-02-17
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/3/ijsem004707.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004707&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 1993; 64:253–260 [View Article][PubMed]
    [Google Scholar]
  2. Jeong H, Choi S-K, Ryu C-M, Park S-H. Chronicle of a Soil Bacterium: Paenibacillus polymyxa E681 as a tiny guardian of plant and human health. Front Microbiol 2019; 10:467 [View Article][PubMed]
    [Google Scholar]
  3. Dong Lee S, Lee DS. Paenibacillus cavernae sp. nov., isolated from soil of a natural cave. Int J Syst Evol Microbiol 2016; 66:598–603 [View Article][PubMed]
    [Google Scholar]
  4. Chen Z, Ouyang W, Chen Y, Tian W, Sun L. Paenibacillus zeisoli sp. nov., isolated from maize-cultivated soil artificially contaminated with cadmium. Int J Syst Evol Microbiol 2019; 69:1149–1154 [View Article][PubMed]
    [Google Scholar]
  5. Cho H, Heo J, Ahn J-H, Weon H-Y, Kim J-S et al. Paenibacillus solanacearum sp. nov., isolated from rhizosphere soil of a tomato plant. Int J Syst Evol Microbiol 2017; 67:5046–5050 [View Article][PubMed]
    [Google Scholar]
  6. Lu L-Y, Chen L-L, Xing Z-Y, Hu T, Lu J-S et al. Paenibacillus yanchengensis sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2018; 68:1902–1906 [View Article][PubMed]
    [Google Scholar]
  7. Trinh NH, Kim J. Paenibacillus piri sp. nov., isolated from urban soil. Int J Syst Evol Microbiol 2020; 70:656–661 [View Article][PubMed]
    [Google Scholar]
  8. Cha I-T, Cho E-S, Lee YK, Roh SW, Seo M-J. Paenibacillus psychroresistens sp. nov., isolated from the soil of an Arctic glacial retreat. J Microbiol 2019; 57:569–574 [View Article][PubMed]
    [Google Scholar]
  9. Cha I-T, Cho E-S, Yoo Y, Seok YJ, Park I et al. Paenibacillus arcticus sp. nov., isolated from Arctic soil. Int J Syst Evol Microbiol 2017; 67:4385–4389 [View Article][PubMed]
    [Google Scholar]
  10. Lee J-W, Kim Y-E, Kang M-S, Lee K-E, Lee E-Y et al. Paenibacillus albilobatus sp. nov., isolated from acidic soil on Jeju island. J Microbiol 2018; 56:393–398 [View Article][PubMed]
    [Google Scholar]
  11. Grady EN, MacDonald J, Liu L, Richman A, Yuan Z-C. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 2016; 15:203 [View Article][PubMed]
    [Google Scholar]
  12. Weselowski B, Nathoo N, Eastman AW, MacDonald J, Yuan Z-C. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiol 2016; 16:244 [View Article][PubMed]
    [Google Scholar]
  13. Kim D-S, Bae C-Y, Jeon J-J, Chun S-J, Oh HW et al. Paenibacillus elgii sp. nov., with broad antimicrobial activity. Int J Syst Evol Microbiol 2004; 54:2031–2035 [View Article][PubMed]
    [Google Scholar]
  14. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM et al. Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 2014; 52:347–375 [View Article][PubMed]
    [Google Scholar]
  15. Olishevska S, Nickzad A, Déziel E. Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Appl Microbiol Biotechnol 2019; 103:1189–1215 [View Article][PubMed]
    [Google Scholar]
  16. Chang Y-H, Jung MY, Park I-S, Oh H-M. Sporolactobacillus vineae sp. nov., a spore-forming lactic acid bacterium isolated from vineyard soil. Int J Syst Evol Microbiol 2008; 58:2316–2320 [View Article][PubMed]
    [Google Scholar]
  17. Liu Y, Zhai L, Wang R, Zhao R, Zhang X et al. Paenibacillus zeae sp. nov., isolated from maize (Zea mays L.) seeds. Int J Syst Evol Microbiol 2015; 65:4533–4538 [View Article][PubMed]
    [Google Scholar]
  18. Liu B, Liu G-H, Sengonca C, Schumann P, Lan J-L et al. Paenibacillus solani sp. nov., isolated from potato rhizosphere soil. Int J Syst Evol Microbiol 2016; 66:4486–4491 [View Article][PubMed]
    [Google Scholar]
  19. Chang YH, Kim JK, Kim HJ, Kim WY, Kim YB et al. Selection of a potential probiotic Lactobacillus strain and subsequent in vivo studies. Antonie van Leeuwenhoek 2001; 80:193–199 [View Article][PubMed]
    [Google Scholar]
  20. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  21. Chun J, Goodfellow M. A phylogenetic analysis of the genus nocardia with 16s rRNA gene sequences. Int J Syst Evol Microbiol 1995; 45:240–245
    [Google Scholar]
  22. da Mota FF, Gomes EA, Paiva E, Rosado AS, Seldin L. Use of rpoB gene analysis for identification of nitrogen-fixing Paenibacillus species as an alternative to the 16S rRNA gene. Lett Appl Microbiol 2004; 39:34–40 [View Article][PubMed]
    [Google Scholar]
  23. Shin Y, Paek J, Kim H, Kook J-K, Kim J-S et al. Absicoccus porci gen. nov., sp. nov., a member of the family Erysipelotrichaceae isolated from pig faeces. Int J Syst Evol Microbiol 2020; 70:732–737 [View Article][PubMed]
    [Google Scholar]
  24. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University; 1983 pp 75–90
    [Google Scholar]
  25. Felsenstein J. PHYLIP (Phylogeny Inference Package). version 3.6 Seattle, Washington, USA: Department of Genetics, University of Washington; 2005
    [Google Scholar]
  26. Jeon Y-S, Chung H, Park S, Hur I, Lee J-H et al. jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 2005; 21:3171–3173 [View Article][PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  29. Kidd KK, Sgaramella-Zonta LA. Phylogenetic analysis: concepts and methods. Am J Hum Genet 1971; 23:235–252[PubMed]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  31. Modesto M, Satti M, Watanabe K, Sciavilla P, Felis GE et al. Alloscardovia theropitheci sp. nov., isolated from the faeces of gelada baboon, the 'bleeding heart' monkey (Theropithecus gelada). Int J Syst Evol Microbiol 2019; 69:3041–3048 [View Article][PubMed]
    [Google Scholar]
  32. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  33. Cho S-L, Jung MY, Park M-H, Chang Y-H, Yoon J-H et al. Pseudoclavibacter chungangensis sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2010; 60:1672–1677 [View Article][PubMed]
    [Google Scholar]
  34. Liao Y-C, Lin S-H, Lin H-H. Completing bacterial genome assemblies: strategy and performance comparisons. Sci Rep 2015; 5:8747 [View Article][PubMed]
    [Google Scholar]
  35. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  36. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article][PubMed]
    [Google Scholar]
  37. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  38. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016; 4:e1900v1
    [Google Scholar]
  39. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  40. Paek J, Lee M-H, Kim B-C, Sang B-I, Paek WK et al. Clostridium vulturis sp. nov., isolated from the intestine of the cinereous vulture (Aegypius monachus). Antonie van Leeuwenhoek 2014; 106:577–583 [View Article][PubMed]
    [Google Scholar]
  41. Chen X-R, Shao C-B, Wang Y-W, He M-X, Ma K-D, KD M et al. Paenibacillus vini sp. nov., isolated from alcohol fermentation pit mud in Sichuan Province, China. Antonie van Leeuwenhoek 2015; 107:1429–1436 [View Article][PubMed]
    [Google Scholar]
  42. Paek J, Shin Y, Kook J-K, Chang Y-H. Blautia argi sp. nov., a new anaerobic bacterium isolated from dog faeces. Int J Syst Evol Microbiol 2019; 69:33–38 [View Article][PubMed]
    [Google Scholar]
  43. Paek J, Shin Y, Kim J-S, Kim H, Kook J-K et al. Description of Absiella argi gen. nov., sp. nov., and transfer of Eubacterium dolichum and Eubacterium tortuosum to the genus Absiella as Absiella dolichum comb. nov. and Absiella tortuosum comb. nov. Anaerobe 2017; 48:70–75 [View Article][PubMed]
    [Google Scholar]
  44. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  45. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986; 123:251–256 [View Article][PubMed]
    [Google Scholar]
  46. Johnson JS, Spakowicz DJ, Hong B-Y, Petersen LM, Demkowicz P et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 2019; 10:5029 [View Article][PubMed]
    [Google Scholar]
  47. Pasari N, Gupta M, Eqbal D, Yazdani SS. Genome analysis of Paenibacillus polymyxa A18 gives insights into the features associated with its adaptation to the termite gut environment. Sci Rep 2019; 9:6091 [View Article][PubMed]
    [Google Scholar]
  48. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis sp. nov. Int J Syst Bacteriol 1997; 47:299–306 [View Article][PubMed]
    [Google Scholar]
  49. Logan NA, De Clerck E, Lebbe L, Verhelst A, Goris J et al. Paenibacillus cineris sp. nov. and Paenibacillus cookii sp. nov., from Antarctic volcanic soils and a gelatin-processing plant. Int J Syst Evol Microbiol 2004; 54:1071–1076 [View Article][PubMed]
    [Google Scholar]
  50. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  51. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16s rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  52. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:913–920 [View Article][PubMed]
    [Google Scholar]
  53. Vos P, Garrity G, Jones D, Krieg NR, Ludwig W et al. Bergey’s Manual of Systematic Bacteriology: Volume 3: The Firmicutes (Vol. 3) Springer Science & Business Media; 2011
    [Google Scholar]
  54. Siddiqi MZ, Choi GM, Choi KD, Im WT. Paenibacillus azotifigens sp. nov., a novel nitrogen-fixing bacterium isolated from paddy soil. Int J Syst Evol Microbiol 2017; 67:4917–4922 [View Article][PubMed]
    [Google Scholar]
  55. Gao C, Han J, Liu Z, Xu X, Hang F et al. Paenibacillus bovis sp. nov., isolated from raw yak (Bos grunniens) milk. Int J Syst Evol Microbiol 2016; 66:1413–1418 [View Article][PubMed]
    [Google Scholar]
  56. Kim Y-S, Cha C-J. Paenibacillus translucens sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2018; 68:936–941 [View Article][PubMed]
    [Google Scholar]
  57. Nahar S, Cha C-J. Paenibacillus limicola sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2018; 68:423–426 [View Article][PubMed]
    [Google Scholar]
  58. Kämpfer P, Rosselló-Mora R, Falsen E, Busse H-J, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006; 56:781–786 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004707
Loading
/content/journal/ijsem/10.1099/ijsem.0.004707
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error