1887

Abstract

A Gram-stain-negative, aerobic, yellow, non-motile, rod-shaped and alginate-degrading bacterium, designated Dm15, was isolated from marine alga collected in Weihai, PR China. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain Dm15 represents a distinct line of the family . Strain Dm15 had the highest 16S rRNA gene sequence similarity to its closest phylogenetic neighbour (96.7 %) and 93.7–96.4 % sequence similarity to other phylogenetic neighbours (, , , and ) in the family . The novel isolate was able to grow at 10–40 °C (optimum, 30–33 °C), pH 7.0–9.0 (optimum, pH 7.0–7.5) and with 0.5–6.0 % NaCl (optimum 2.0–3.0 %, w/v). It could grow at 40 °C, and degrade alginate and cellulose, which were different from the neighbour genera. The draft genome consisted of 3395 genes with a total length of 3 798 431 bp and 34.1mol% G+C content. Especially, there were some specific genes coding for cellulase and alginate lyase, which provided a basis for the above phenotypic characteristics. The strain's genome sequence showed 71.1–80.2 % average amino acid identity values and 71.8–77.7 % average nucleotide identity values compared to the type strains of related genera within the family . It shared digital DNA–DNA hybridization identity of 19.8 and 20.9 % with and , respectively. The sole menaquinone was MK-6. The major fatty acids were iso-C and iso-C G. The polar lipids included six unidentified polar lipids, four unidentified aminolipids and phosphatidylethanolamine. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain Dm15 represents a novel species of a new genus in the family , phylum , for which the name gen. nov., sp. nov. is proposed. The type strain is Dm15 (KCTC 42256=CICC 23815).

Funding
This study was supported by the:
  • Key Science and Technology Program of Weihai (Award 1070413421511)
    • Principle Award Recipient: Yan-XiaZhou
  • China Postdoctoral Science Foundation (Award 2183)
    • Principle Award Recipient: Yan-XiaZhou
  • Natural Science Foundation of Shandong Province (Award ZR2017MC019)
    • Principle Award Recipient: Yan-XiaZhou
  • National Natural Science Foundation of China (Award 31700116)
    • Principle Award Recipient: Yan-XiaZhou
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004701
2021-02-10
2024-11-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/3/ijsem004701.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004701&mimeType=html&fmt=ahah

References

  1. Reichenbach H. Validation of the publication of new names and new combinations previously effectively published outside the IJSB, list no. 41. Int J Syst Evol Microbiol 1992; 42:327–328
    [Google Scholar]
  2. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis STROHL and Tait 1978). Int J Syst Bacteriol 1996; 46:128–148 [View Article]
    [Google Scholar]
  3. Bernardet J, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070
    [Google Scholar]
  4. Parte AC. LPSN – list of prokaryotic names with standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article]
    [Google Scholar]
  5. Liu C, Zhang X-Y, Wen X-R, Shi M, Chen X-L et al. Arcticiflavibacter luteus gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from intertidal sand. Int J Syst Evol Microbiol 2016; 66:144–149 [View Article]
    [Google Scholar]
  6. Shakeela Q, Shehzad A, Tang K, Zhang Y, Zhang XH. Ichthyenterobacterium magnum gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from olive flounder (Paralichthys olivaceus). Int J Syst Evol Microbiol 2015; 65:1186–1192 [View Article]
    [Google Scholar]
  7. Nedashkovskaya OI, Kim SB, Han SK, Snauwaert C, Vancanneyt M et al. Winogradskyella thalassocola gen. nov., sp. nov., Winogradskyella epiphytica sp. nov. and Winogradskyella eximia sp. nov., marine bacteria of the family Flavobacteriaceae . Int J Syst Evol Microbiol 2005; 55:49–55 [View Article]
    [Google Scholar]
  8. Bowman JP, McCammon SA, Brown JL, Nichols PD, McMeekin TA. Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats. Int J Syst Bacteriol 1997; 47:670–677 [View Article]
    [Google Scholar]
  9. McBride MJ. The family Flavobacteriaceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes: Other Major Lineages of Bacteria and The Archaea Berlin, Heidelberg: Springer Berlin Heidelberg; 2014 pp 643–676
    [Google Scholar]
  10. Zhou YX, Du Z-J, Chen G-J. Seonamhaeicola algicola sp. nov., a complex-polysaccharide-degrading bacterium isolated from Gracilaria blodgettii, and emended description of the genus Seonamhaeicola . Int J Syst Evol Microbiol 2016; 66:2064–2068 [View Article]
    [Google Scholar]
  11. Qin Q-L, Zhang X-Y, Wang X-M, Liu G-M, Chen X-L et al. The complete genome of Zunongwangia profunda SM-A87 reveals its adaptation to the deep-sea environment and ecological role in sedimentary organic nitrogen degradation. BMC Genomics 2010; 11:247 [View Article]
    [Google Scholar]
  12. HM O, Giovannoni SJ, Lee K, Ferriera S, Johnson J. Complete genome sequence of Robiginitalea biformata HTCC2501. J Bacteriol 2009; 191:7144–7145
    [Google Scholar]
  13. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  14. Thompson J, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article]
    [Google Scholar]
  15. Hall T. BioEdit: a user-friendly biological sequence alignment program for windows 95/98/NT. Nucleic Acids Symp. Ser 1999; 41:95–98
    [Google Scholar]
  16. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  18. Bouthinon D, Soldano H. A new method to predict the consensus secondary structure of a set of unaligned RNA sequences. Bioinformatics 1999; 15:785–798 [View Article]
    [Google Scholar]
  19. Akutsu T. Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Applied Mathematics 2000; 104:45–62 [View Article]
    [Google Scholar]
  20. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. Kegg as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:D457–D462 [View Article]
    [Google Scholar]
  21. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  22. Consortium TU UniProt: a worldwide hub of protein knowledge. Nucleic acids research 2018; 47:D506–D515
    [Google Scholar]
  23. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article]
    [Google Scholar]
  24. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article]
    [Google Scholar]
  25. Rodriguez-R L, Konstantinidis K. Bypassing cultivation to identify bacterial species: culture-independent genomic approaches identify credibly distinct clusters, avoid cultivation bias, and provide true insights into microbial species. Microbe Magazine 2014111–118
    [Google Scholar]
  26. Yoon S-H, Ha S-min, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  28. Bernardet J-F. Family I. Flavobacteriaceae Reichenbach 1992b, 327VP (Effective publication: Reichenbach 1989b, 2013.) emend. Bernardet, Segers, Vancanneyt, Berthe, Kersters and Vandamme 1996, 145 emend. Bernardet, Nakagawa and Holmes 2002, 1057. In Goodfellow M, Kämpfer P, Jongsik Chun, PaulDe Vos. (editors) Bergey’s Manual of Systematic Bacteriology 4, 2nd ed. New York: Springer: Rainey and William B. Whitman; 2012
    [Google Scholar]
  29. Nordin N, Guskov A, Phua T, Sahaf N, Xia Y et al. Exploring the structure and function of Thermotoga maritima CorA reveals the mechanism of gating and ion selectivity in Co2+/Mg2+ transport. Biochem J 2013; 451:365–374 [View Article]
    [Google Scholar]
  30. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article]
    [Google Scholar]
  31. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  32. Yang S-J, Cho J-C. Gaetbulibacter marinus sp. nov., isolated from coastal seawater, and emended description of the genus Gaetbulibacter . Int J Syst Evol Microbiol 2008; 58:315–318 [View Article]
    [Google Scholar]
  33. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article]
    [Google Scholar]
  34. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8:87–91 [View Article]
    [Google Scholar]
  35. Tindall BJ, Sikorski J, Smibert RM, Krieg NR et al. Phenotypic charaterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp 330–393
    [Google Scholar]
  36. Sawant SS, Salunke BK, Kim BS. A rapid, sensitive, simple plate assay for detection of microbial alginate lyase activity. Enzyme Microb Technol 2015; 77:8–13 [View Article][PubMed]
    [Google Scholar]
  37. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:1–6
    [Google Scholar]
  38. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  39. Kwon KK, Lee SJ, Park JH, Ahn TY, Lee HK. Psychroserpens mesophilus sp. nov., a mesophilic marine bacterium belonging to the family Flavobacteriaceae isolated from a young biofilm. Int J Syst Evol Microbiol 2006; 56:1055–1058 [View Article]
    [Google Scholar]
  40. Lee DH, Cho SJ, Kim SM, Lee SB. Psychroserpens damuponensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2013; 63:703–708 [View Article]
    [Google Scholar]
  41. Baek K, Lee YM, Hwang CY, Park H, Jung YJ et al. Psychroserpens jangbogonensis sp. nov., a psychrophilic bacterium isolated from Antarctic marine sediment. Int J Syst Evol Microbiol 2015; 65:183–188 [View Article]
    [Google Scholar]
  42. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV. Winogradskyella ulvae sp. nov., an epiphyte of a Pacific seaweed, and emended descriptions of the genus Winogradskyella and Winogradskyella thalassocola, Winogradskyella echinorum, Winogradskyella exilis and Winogradskyella eximia . Int J Syst Evol Microbiol 2012; 62:1450–1456 [View Article]
    [Google Scholar]
  43. Nedashkovskaya OI, Vancanneyt M, Kim SB, Zhukova NV. Winogradskyella echinorum sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius . Int J Syst Evol Microbiol 2009; 59:1465–1468 [View Article]
    [Google Scholar]
  44. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV, Kim SJ, Rhee SK et al. Winogradskyella litoriviva sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2015; 65:3652–3657 [View Article]
    [Google Scholar]
  45. Lee JH, Kang JW, Shin SB, Seong CN. Winogradskyella flava sp. nov., isolated from the brown alga, Sargassum fulvellum . Int J Syst Evol Microbiol 2017; 67:3540–3546 [View Article]
    [Google Scholar]
  46. Park S, Park JM, Won SM, Yoon JH. Winogradskyella crassostreae sp. nov., isolated from an oyster (Crassostrea gigas). Int J Syst Evol Microbiol 2015; 65:2890–2895 [View Article]
    [Google Scholar]
  47. Pinhassi J, Nedashkovskaya OI, Hagstrom A, Vancanneyt M. Winogradskyella rapida sp. nov., isolated from protein-enriched seawater. Int J Syst Evol Microbiol 2009; 59:2180–2184 [View Article]
    [Google Scholar]
  48. Franco A, Busse HJ, Schubert P, Wilke T, Kämpfer P et al. Winogradskyella pocilloporae sp. nov. isolated from healthy tissue of the coral Pocillopora damicornis . Int J Syst Evol Microbiol 2018; 68:1689–1696 [View Article]
    [Google Scholar]
  49. Romanenko LA, Tanaka N, Frolova GM, Mikhailov VV. Winogradskyella arenosi sp. nov., a member of the family Flavobacteriaceae isolated from marine sediments from the Sea of Japan. Int J Syst Evol Microbiol 2009; 59:1443–1446 [View Article]
    [Google Scholar]
  50. Kurilenko VV, Romanenko LA, Isaeva MP, Svetashev VI, Mikhailov VV. Winogradskyella algae sp. nov., a marine bacterium isolated from the brown alga. Antonie van Leeuwenhoek 2019; 112:731–739 [View Article]
    [Google Scholar]
  51. Kim JY, Park SH, Seo GY, Kim YJ, Oh D-C. Winogradskyella eckloniae sp. nov., a marine bacterium isolated from the brown alga Ecklonia cava . Int J Syst Evol Microbiol 2015; 65:2791–2796 [View Article][PubMed]
    [Google Scholar]
  52. Schellenberg J, Busse HJ, Hardt M, Schubert P, Wilke T et al. Winogradskyella haliclonae sp. nov., isolated from a marine sponge of the genus Haliclona . Int J Syst Evol Microbiol 2017; 67:4902–4910 [View Article]
    [Google Scholar]
  53. Nedashkovskaya OI, Vancanneyt M, Kim SB. Bizionia echini sp. nov., isolated from a sea urchin. Int J Syst Evol Microbiol 2010; 60:928–931 [View Article]
    [Google Scholar]
  54. Yoon JH, Kang CH, Jung YT, Kang SJ. Bizionia hallyeonensis sp. nov., isolated from seawater in an oyster farm. Int J Syst Evol Microbiol 2013; 63:685–690 [View Article]
    [Google Scholar]
  55. Kim YO, Park IS, Park S, Nam BH, Kim DG et al. Bizionia berychis sp. nov., isolated from intestinal tract of a splendid alfonsino (Beryx splendens). Int J Syst Evol Microbiol 2018; 68:1227–1232 [View Article]
    [Google Scholar]
  56. Li H, Zhang XY, Liu C, Liu A, Qin QL et al. Bizionia arctica sp. nov., isolated from Arctic fjord seawater, and emended description of the genus Bizionia . Int J Syst Evol Microbiol 2015; 65:2925–2930 [View Article]
    [Google Scholar]
  57. Bowman JP, Nichols DS. Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia . Int J Syst Evol Microbiol 2005; 55:1471–1486 [View Article]
    [Google Scholar]
  58. Kim HS, Hyun DW, Kim PS, Lee JY, Shin NR et al. Bizionia fulviae sp. nov., isolated from the gut of an egg cockle, Fulvia mutica . Int J Syst Evol Microbiol 2015; 65:3066–3072 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.004701
Loading
/content/journal/ijsem/10.1099/ijsem.0.004701
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error