1887

Abstract

A Gram-stain-negative, strictly anaerobic, non-motile, rod-shaped bacterium, designated SFB93, was isolated from the intertidal sediments of South San Francisco Bay, located near Palo Alto, CA, USA. SFB93 was capable of acetylenotrophic and diazotrophic growth, grew at 22–37 °C, pH 6.3–8.5 and in the presence of 10–45 g l NaCl. Phylogenetic analyses based on 16S rRNA gene sequencing showed that SFB93 represented a member of the genus with highest 16S rRNA gene sequence similarities to DSM 3246 (96.6 %), DSM 2380 (96.5 %), and DSM 2394 (96.7 %). Genome sequencing revealed a genome size of 3.22 Mbp and a DNA G+C content of 53.4 %. SFB93 had low genome-wide average nucleotide identity (81–87.5 %) and <70 % digital DNA–DNA hybridization value with other members of the genus . The phylogenetic position of SFB93 within the family and as a novel member of the genus was confirmed via phylogenetic reconstruction based on concatenated alignments of 92 bacterial core genes. On the basis of the results of phenotypic, genotypic and phylogenetic analyses, a novel species, sp. nov., is proposed, with SFB93 (=DSM 106009=JCM 33327=ATCC TSD-118) as the type strain.

Funding
This study was supported by the:
  • RonaldS. Oremland , U.S. Geological Survey
  • DeniseM. Akob , U.S. Geological Survey
  • JannaL. Fierst , National Science Foundation (US) , (Award DEB1941854)
  • JannaL. Fierst , National Science Foundation , (Award EF1921585)
  • JannaL. Fierst , University of Alabama
  • JannaL. Fierst , National Institutes of Health (US) , (Award NIH R01 GM102511)
  • DeniseM. Akob , National Aeronautics and Space Administration (US) , (Award 13-EXO13-0001)
  • RonaldS. Oremland , National Aeronautics and Space Administration , (Award 13-EXO13-0001)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004698
2021-02-11
2021-02-26
Loading full text...

Full text loading...

References

  1. Yoshinari T, Hynes R, Knowles R. Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil. Soil Biol Biochem 1977; 9: 177 183 [CrossRef]
    [Google Scholar]
  2. Stewart WD, Fitzgerald GP, Burris RH. In situ studies on N2 fixation using the acetylene reduction technique. Proc Natl Acad Sci U S A 1967; 58: 2071 2078 [CrossRef] [PubMed]
    [Google Scholar]
  3. Jensen MM, Thamdrup B, Dalsgaard T. Effects of specific inhibitors on anammox and denitrification in marine sediments. Appl Environ Microbiol 2007; 73: 3151 3158 [CrossRef] [PubMed]
    [Google Scholar]
  4. Knowles R. Denitrification. Microbiol Rev 1982; 46: 43 70 [CrossRef] [PubMed]
    [Google Scholar]
  5. Balderston WL, Sherr B, Payne WJ. Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus . Appl Environ Microbiol 1976; 31: 504 508 [CrossRef] [PubMed]
    [Google Scholar]
  6. Watanabe I, de Guzman MR. Effect of nitrate on acetylene disappearance from anaerobic soil. Soil Biol Biochem 1980; 12: 193 194 [CrossRef]
    [Google Scholar]
  7. Culbertson CW, Zehnder AJ, Oremland RS. Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures. Appl Environ Microbiol 1981; 41: 396 403 [CrossRef] [PubMed]
    [Google Scholar]
  8. Yeomans JC, Beauchamp EG. Acetylene as a possible substrate in the denitrification process. Can J Soil Sci 1982; 62: 139 144 [CrossRef]
    [Google Scholar]
  9. Topp E, Germon JC. Acetylene metabolism and stimulation of denitrification in an agricultural soil. Appl Environ Microbiol 1986; 52: 802 806 [CrossRef] [PubMed]
    [Google Scholar]
  10. Culbertson CW, Strohmaier FE, Oremland RS. Acetylene as a substrate in the development of primordial bacterial communities. Orig Life Evol Biosph 1988; 18: 397 407 [CrossRef] [PubMed]
    [Google Scholar]
  11. Schink B. Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. Arch Microbiol 1985; 142: 295 301 [CrossRef]
    [Google Scholar]
  12. Akob DM, Sutton JM, Fierst JL, Haase KB, Baesman S et al. Acetylenotrophy: a hidden but ubiquitous microbial metabolism?. FEMS Microbiol Ecol 2018; 94: 94:fiy103-fiy103 [CrossRef] [PubMed]
    [Google Scholar]
  13. Seitz H-J, Schink B, Conrad R. Thermodynamics of hydrogen metabolism in methanogenic cocultures degrading ethanol or lactate. FEMS Microbiol Lett 1988; 55: 119 124 [CrossRef]
    [Google Scholar]
  14. Seitz H-J, Siñeriz F, Schink B, Conrad R. Hydrogen production during fermentation of acetoin and acetylene by Pelobacter acetylenicus . FEMS Microbiol Lett 1990; 71: 83 87 [CrossRef]
    [Google Scholar]
  15. Rosner BM, Schink B. Purification and characterization of acetylene hydratase of Pelobacter acetylenicus, a tungsten iron-sulfur protein. J Bacteriol 1995; 177: 5767 5772 [CrossRef] [PubMed]
    [Google Scholar]
  16. Rosner BM, Rainey FA, Kroppenstedt RM, Schink B. Acetylene degradation by new isolates of aerobic bacteria and comparison of acetylene hydratase enzymes. FEMS Microbiol Lett 1997; 148: 175 180 [CrossRef] [PubMed]
    [Google Scholar]
  17. Meckenstock RU, Krieger R, Ensign S, Kroneck PM, Schink B. Acetylene hydratase of Pelobacter acetylenicus. Molecular and spectroscopic properties of the tungsten iron-sulfur enzyme. Eur J Biochem 1999; 264: 176 182 [CrossRef] [PubMed]
    [Google Scholar]
  18. Seiffert GB, Ullmann GM, Messerschmidt A, Schink B, Kroneck PMH et al. Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase. Proc Natl Acad Sci U S A 2007; 104: 3073 3077 [CrossRef] [PubMed]
    [Google Scholar]
  19. Tenbrink F, Schink B, Kroneck PMH. Exploring the active site of the tungsten, iron-sulfur enzyme acetylene hydratase. J Bacteriol 2011; 193: 1229 1236 [CrossRef] [PubMed]
    [Google Scholar]
  20. Miller LG, Baesman SM, Oremland RS. Stable carbon isotope fractionation during bacterial acetylene fermentation: potential for life detection in hydrocarbon-rich volatiles of icy planet(oid)s. Astrobiology 2015; 15: 977 986 [CrossRef] [PubMed]
    [Google Scholar]
  21. Oremland RS, Voytek MA. Acetylene as fast food: implications for development of life on anoxic primordial earth and in the outer solar system. Astrobiology 2008; 8: 45 58 [CrossRef] [PubMed]
    [Google Scholar]
  22. ten Brink F. Living on acetylene. A primordial energy source. In Kroneck PMH, Torres MES. (editors) The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment, Metal Ions in Life Sciences Dordrecht: Springer; 2014 pp 15 35
    [Google Scholar]
  23. Boll M, Einsle O, Ermler U, Kroneck PMH, Ullmann GM. Structure and function of the unusual tungsten enzymes acetylene hydratase and class II benzoyl-coenzyme A reductase. J Mol Microbiol Biotechnol 2016; 26: 119 137 [CrossRef] [PubMed]
    [Google Scholar]
  24. Kroneck PMH. Acetylene hydratase: a non-redox enzyme with tungsten and iron-sulfur centers at the active site. J Biol Inorg Chem 2016; 21: 29 38 [CrossRef] [PubMed]
    [Google Scholar]
  25. Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol 2020; 70: 5972 6016 [CrossRef] [PubMed]
    [Google Scholar]
  26. Miller LG, Baesman SM, Kirshtein J, Voytek MA, Oremland R. A biogeochemical and genetic survey of acetylene fermentation by environmental samples and bacterial isolates. Geomicrobiol J 2013; 30: 501 516 [CrossRef]
    [Google Scholar]
  27. Mao X, Oremland RS, Liu T, Gushgari S, Landers AA et al. Acetylene fuels TCE reductive dechlorination by defined Dehalococcoides/Pelobacter consortia. Environ Sci Technol 2017; 51: 2366 2372 [CrossRef] [PubMed]
    [Google Scholar]
  28. Sutton JM, Baesman SM, Fierst JL, Poret-Peterson AT, Oremland RS et al. Complete genome sequence of the acetylene fermenting Pelobacter strain SFB93. Genome Announc 2017; 5: e01573 01516 [CrossRef] [PubMed]
    [Google Scholar]
  29. Akob DM, Baesman SM, Sutton JM, Fierst JL, Mumford AC et al. Detection of diazotrophy in the acetylene-fermenting anaerobe Pelobacter sp. strain SFB93. Appl Environ Microbiol 2017; 83: e01198 01117 [CrossRef] [PubMed]
    [Google Scholar]
  30. Schink B. The Genus Pelobacter . In Dworkin M, Falkow S, Rosenberg E, Schleifer K, Stackebrandt E. (editors) The Prokaryotes New York: Springer; 2006 pp 5 11
    [Google Scholar]
  31. Blum JS, Han S, Lanoil B, Saltikov C, Witte B et al. Ecophysiology of "Halarsenatibacter silvermanii" strain SLAS-T, gen. nov., sp. nov., a facultative chemoautotrophic arsenate respirer from salt-saturated Searles Lake, California. Appl Environ Microbiol 2009; 75: 1950 1960 [CrossRef] [PubMed]
    [Google Scholar]
  32. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28: 1823 1829 [CrossRef] [PubMed]
    [Google Scholar]
  33. Westram R, Bader K, Prüsse E, Kumar Y, Meier H. ARB: a software environment for sequence data. Handbook of molecular microbial ecology I John Wiley & Sons, Inc; 2011 pp 399 406
    [Google Scholar]
  34. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The Silva ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41: D590 D596 [CrossRef] [PubMed]
    [Google Scholar]
  35. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 1312 1313 [CrossRef] [PubMed]
    [Google Scholar]
  36. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28: 1647 1649 [CrossRef] [PubMed]
    [Google Scholar]
  37. Evers S, Weizenegger M, Ludwig W, Schink B, Schleifer K-H. The phylogenetic positions of Pelobacter acetylenicus and Pelobacter propionicus . Syst Appl Microbiol 1993; 16: 216 218 [CrossRef]
    [Google Scholar]
  38. Stackebrandt E, Wehmeyer U, Schink B. The phylogenetic status of Pelobacter acidigallici, Pelobacter venetianus, and Pelobacter carbinolicus . Syst Appl Microbiol 1989; 11: 257 260 [CrossRef]
    [Google Scholar]
  39. Karsch-Mizrachi I, Ouellette BFF. The GenBank sequence database. In Baxevanis AD, Ouellette BFF. (editors) Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins John Wiley & Sons, Inc.; 2001 pp 45 63
    [Google Scholar]
  40. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56: 280 285 [CrossRef] [PubMed]
    [Google Scholar]
  41. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403 410 [CrossRef] [PubMed]
    [Google Scholar]
  42. Henz SR, Huson DH, Auch AF, Nieselt-Struwe K, Schuster SC. Whole-genome prokaryotic phylogeny. Bioinformatics 2005; 21: 2329 2335 [CrossRef] [PubMed]
    [Google Scholar]
  43. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81 91 [CrossRef] [PubMed]
    [Google Scholar]
  44. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66: 1100 1103 [CrossRef] [PubMed]
    [Google Scholar]
  45. Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. Blast ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011; 12: 1 10 [CrossRef] [PubMed]
    [Google Scholar]
  46. Widdel F, Kohring G-W, Mayer F. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Arch Microbiol 1983; 134: 286 294 [CrossRef]
    [Google Scholar]
  47. Hermann M, Noll KM, Wolfe RS. Improved agar bottle plate for isolation of methanogens or other anaerobes in a defined gas atmosphere. Appl Environ Microbiol 1986; 51: 1124 1126 [CrossRef] [PubMed]
    [Google Scholar]
  48. Visscher PT, Taylor BF. Demethylation of dimethylsulfoniopropionate to 3-mercaptopropionate by an aerobic marine bacterium. Appl Environ Microbiol 1994; 60: 4617 4619 [CrossRef] [PubMed]
    [Google Scholar]
  49. Blumentals II, Itoh M, Olson GJ, Kelly RM. Role of polysulfides in reduction of elemental sulfur by the hyperthermophilic archaebacterium Pyrococcus furiosus . Appl Environ Microbiol 1990; 56: 1255 1262 [CrossRef] [PubMed]
    [Google Scholar]
  50. Hobbie JE, Daley RJ, Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 1977; 33: 1225 1228 [CrossRef] [PubMed]
    [Google Scholar]
  51. Baesman SM, Akob DM, Oremland RS. Growth Characteristics of Syntrophotalea acetylenivorans, strain SFB93, sp. nov., a diazotrophic, acetylenotrophic anaerobe isolated from San Francisco Bay intertidal sediments. US Geological Survey Data Release 2019
    [Google Scholar]
  52. Payne WJ. Influence of acetylene on microbial and enzymatic assays. J Microbiol Methods 1984; 2: 117 133 [CrossRef]
    [Google Scholar]
  53. Oremland RS, Capone DG. Use of specific inhibitors in biogeochemistry and microbial ecology. Adv Microb 1988; 10: 285 383
    [Google Scholar]
  54. Hyman MR, Arp DJ, Daniel A. Acetylene inhibition of metalloenzymes. Anal Biochem 1988; 173: 207 220 [CrossRef] [PubMed]
    [Google Scholar]
  55. Lovley DR, Phillips EJ, Lonergan DJ, Widman PK, Fe WPK. Fe(III) and S0 reduction by Pelobacter carbinolicus . Appl Environ Microbiol 1995; 61: 2132 2138 [CrossRef] [PubMed]
    [Google Scholar]
  56. Schmidt A, Frensch M, Schleheck D, Schink B, Müller N. Degradation of acetaldehyde and its precursors by Pelobacter carbinolicus and P. acetylenicus . PLoS One 2014; 9: e115902 [CrossRef] [PubMed]
    [Google Scholar]
  57. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32: 268 274 [CrossRef] [PubMed]
    [Google Scholar]
  58. Schink B, Stieb M. Fermentative degradation of polyethylene glycol by a strictly anaerobic, Gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov. Appl Environ Microbiol 1983; 45: 1905 1913 [CrossRef] [PubMed]
    [Google Scholar]
  59. Schink B. Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C2 compounds. Arch Microbiol 1984; 137: 33 41 [CrossRef]
    [Google Scholar]
  60. Schink B, Pfennig N. Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch Microbiol 1982; 133: 195 201 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004698
Loading
/content/journal/ijsem/10.1099/ijsem.0.004698
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error