1887

Abstract

Four Gram-stain-positive, catalase-negative, non-spore-forming, rod-shaped bacterial strains (zg-325, zg329, dk561 and dk752) were isolated from the respiratory tract of marmot () and the faeces of Tibetan gazelle () from the Qinghai-Tibet Plateau of PR China. The results of 16S rRNA gene sequence-based phylogenetic analyses indicated that strains zg-325 and dk561 represent members of the genus , most similar to DSM 20671 and B71, respectively. The DNA G+C contents of strains zg-325 and dk561 were 71.6 and 69.3 mol%, respectively. The digital DNA–DNA hybridization values of strains zg-325 and dk561 with their most closely related species were below the 70 % threshold for species demarcation. The four strains grew best at 35 °C in air containing 5 % CO on brain heart infusion (BHI) agar with 5 % sheep blood. All four strains had Cω9 and C as the major cellular fatty acids. MK-8 and MK-9 were the major menaquinones in zg-325 while MK-10 was predominant in dk561. The major polar lipids included diphosphatidylglycerol and phosphatidylinositol. On the basis of several lines of evidence from phenotypic and phylogenetic analyses, zg-325 and dk561 represent novel species of the genus , for which the name sp. nov. and sp. nov. are proposed. The type strains are zg-325 (=GDMCC 1.1724=JCM 34091) and dk561 (=CGMCC 4.7566=JCM 33484). We also propose, on the basis of the phylogenetic results herein, the reclassification of and as comb. nov. and comb. nov., respectively.

Funding
This study was supported by the:
  • Research Units of Discovery of Unknown Bacteria and Function (Award 2018RU010)
    • Principle Award Recipient: JianguoXu
  • National Key R&D Program of China (Award 2019YFC1200505)
    • Principle Award Recipient: JingYang
  • National Key R&D Program of China (Award 2019YFC1200500)
    • Principle Award Recipient: JingYang
  • National Science and Technology Major Project of China (Award 2017ZX10303405-005-002)
    • Principle Award Recipient: DongJin
  • National Science and Technology Major Project of China (Award 2017ZX10303405-002)
    • Principle Award Recipient: DongJin
  • National Science and Technology Major Project of China (Award 2018ZX10712001-018)
    • Principle Award Recipient: ShanLu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004696
2021-02-09
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/3/ijsem004696.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004696&mimeType=html&fmt=ahah

References

  1. Harz CO. Actinomyces bovis ein neuer Schimmel in den Geweben des Rindes. Duet Ztschr Thiermed 1878; 5:125–140
    [Google Scholar]
  2. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria . Front Microbiol 2018; 9:9 [View Article][PubMed]
    [Google Scholar]
  3. Vielkind P, Jentsch H, Eschrich K, Rodloff AC, Stingu C-S. Prevalence of Actinomyces spp. in patients with chronic periodontitis. Int J Med Microbiol 2015; 305:682–688 [View Article][PubMed]
    [Google Scholar]
  4. Funke G, Alvarez N, Pascual C, Falsen E, Akervall E et al. Actinomyces europaeus sp. nov., isolated from human clinical specimens. Int J Syst Bacteriol 1997; 47:687–692 [View Article][PubMed]
    [Google Scholar]
  5. Woo PCY, Fung AMY, Lau SKP, Teng JLL, Wong BHL et al. Actinomyces hongkongensis sp. nov. a novel Actinomyces species isolated from a patient with pelvic actinomycosis. Syst Appl Microbiol 2003; 26:518–522 [View Article][PubMed]
    [Google Scholar]
  6. Dong K, Lu S, Yang J, Pu J, Lai X-H et al. Nocardioides jishulii sp. nov.,isolated from faeces of Tibetan gazelle (Procapra picticaudata). Int J Syst Evol Microbiol 2020; 70:3665–3672 [View Article][PubMed]
    [Google Scholar]
  7. Meng X, Lu S, Lai X-H, Wang Y, Wen Y et al. Actinomyces liubingyangii sp. nov. isolated from the vulture Gypaetus barbatus . Int J Syst Evol Microbiol 2017; 67:1873–1879 [View Article][PubMed]
    [Google Scholar]
  8. Zhu W, Yang J, Lu S, Lai X-H, Jin D et al. Actinomyces qiguomingii sp. nov., isolated from the Pantholops hodgsonii . Int J Syst Evol Microbiol 2020; 70:58–64 [View Article][PubMed]
    [Google Scholar]
  9. Li J, Lu S, Yang J, Pu J, Lai X-H et al. Actinomyces lilanjuaniae sp. nov., isolated from the faeces of Tibetan antelope (Pantholops hodgsonii) on the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2019; 69:3485–3491 [View Article][PubMed]
    [Google Scholar]
  10. Dang CC, Le VS, Gascuel O, Hazes B, Le QS. FastMG: a simple, fast, and accurate maximum likelihood procedure to estimate amino acid replacement rate matrices from large data sets. BMC Bioinformatics 2014; 15:341 [View Article][PubMed]
    [Google Scholar]
  11. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap Evolution ; 1985; 39783–791
  12. Kolaczkowski B, Thornton JW. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 2004; 431:980–984 [View Article][PubMed]
    [Google Scholar]
  13. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. mega X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  15. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002; Chapter 2:Unit 2.3 [View Article][PubMed]
    [Google Scholar]
  16. Dent VE, Williams RA. Actinomyces denticolens Dent & Williams sp. nov: a new species from the dental plaque of cattle. J Appl Bacteriol 1984; 56:183–192 [View Article][PubMed]
    [Google Scholar]
  17. Meng X, Wang Y, Lu S, Lai X-H, Jin D et al. Actinomyces gaoshouyii sp. nov., isolated from plateau pika (Ochotona curzoniae). Int J Syst Evol Microbiol 2017; 67:3363–3368 [View Article][PubMed]
    [Google Scholar]
  18. Renvoise A, Raoult D, Roux V. Actinomyces timonensis sp. nov., isolated from a human clinical osteo-articular sample. Int J Syst Evol Microbiol 2010; 60:1516–1521 [View Article][PubMed]
    [Google Scholar]
  19. An D, Cai S, Dong X. Actinomyces ruminicola sp. nov., isolated from cattle rumen. Int J Syst Evol Microbiol 2006; 56:2043–2048 [View Article][PubMed]
    [Google Scholar]
  20. Meng X, Lai X-H, Lu S, Liu S, Chen C et al. Actinomyces tangfeifanii sp. nov., isolated from the vulture Aegypius monachus . Int J Syst Evol Microbiol 2018; 68:3701–3706 [View Article][PubMed]
    [Google Scholar]
  21. Hoyles L, Pascual C, Falsen E, Foster G, Grainger JM et al. Actinomyces marimammalium sp. nov., from marine mammals. Int J Syst Evol Microbiol 2001; 51:151–156 [View Article][PubMed]
    [Google Scholar]
  22. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28:3150–3152 [View Article][PubMed]
    [Google Scholar]
  23. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article][PubMed]
    [Google Scholar]
  24. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012; 61:1061–1067 [View Article][PubMed]
    [Google Scholar]
  25. De Ley J. Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 1970; 101:738–754 [View Article][PubMed]
    [Google Scholar]
  26. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  28. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  29. Collins MD, Jones D. A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 1981; 51:129–134 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004696
Loading
/content/journal/ijsem/10.1099/ijsem.0.004696
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error