1887

Abstract

A rod-shaped, motile anaerobic bacterium, designated CCRI-22567, was isolated from a vaginal sample of a woman diagnosed with bacterial vaginosis and subjected to a polyphasic taxonomic study. The novel strain was capable of growth at 30–42 °C (optimum, 42 °C), at pH 5.5–8.5 (optimum, pH 7.0–7.5) and in the presence of 0–1.5 % (w/v) NaCl (optimally at 0.5 % NaCl). The phylogenetic trees based on 16S rRNA gene sequences showed that strain CCRI-22567 forms a distinct evolutionary lineage independent of other taxa in the family . Strain CCRI-22567 exhibited 90.1 % 16S rRNA gene sequence similarity to ACC19a and 89.7 % to subsp. ATCC 43716. The three closest organisms with an available whole genome were compared to strain CCRI-22567 for genomic relatedness assessment. The genomic average nucleotide identities (OrthoANIu) obtained with ACC19a, subsp. ATCC 43715 and ATCC 35896 were 71.8, 70.3 and 69.6 %, respectively. Strain CCRI-22567 contained C ω9 and C ω9 DMA as the major fatty acids. The DNA G+C content of strain CCRI-22567 based on its genome sequence was 33.8 mol%. On the basis of the phylogenetic, chemotaxonomic and other phenotypic properties, strain CCRI-22567 is considered to represent a new genus and species within the family , for which the name gen. nov., sp. nov., is proposed. The type strain of is CCRI-22567 (=LMG 31278=DSM 107614=CCUG 72594).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004691
2021-02-15
2021-02-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/10.1099/ijsem.0.004691/ijsem004691.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004691&mimeType=html&fmt=ahah

References

  1. Grice EA, Kong HH, Conlan S, Deming CB, Davis J et al. Topographical and temporal diversity of the human skin microbiome. Science 2009; 324: 1190 1192 [CrossRef] [PubMed]
    [Google Scholar]
  2. Labutti K, Pukall R, Steenblock K, Glavina Del Rio T, Tice H et al. Complete genome sequence of Anaerococcus prevotii type strain (PC1). Stand Genomic Sci 2009; 1: 159 165 [CrossRef] [PubMed]
    [Google Scholar]
  3. Kämpfer P, Buczolits S, Albrecht A, Busse HJ, Stackebrandt E. Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov. Int J Syst Evol Microbiol 2003; 53: 893 896 [CrossRef] [PubMed]
    [Google Scholar]
  4. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60: 249 266 [CrossRef] [PubMed]
    [Google Scholar]
  5. Maheux AF, Bérubé Ève, Boudreau DK, Raymond F, Corbeil J et al. Draft genome sequence of Criibacterium bergeronii gen. nov., sp. nov., strain CCRI-22567T, isolated from a vaginal sample from a woman with bacterial vaginosis. Genome Announc 2016; 4: e00959 00916 [CrossRef] [PubMed]
    [Google Scholar]
  6. Sistek V, Maheux AF, Boissinot M, Bernard KA, Cantin P et al. Enterococcus ureasiticus sp. nov. and Enterococcus quebecensis sp. nov., isolated from water. Int J Syst Evol Microbiol 2012; 62: 1314 1320 [CrossRef] [PubMed]
    [Google Scholar]
  7. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725 2729 [CrossRef] [PubMed]
    [Google Scholar]
  8. Stackebrandt E, Göker M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846 849 [CrossRef]
    [Google Scholar]
  9. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12: 635 645 [CrossRef] [PubMed]
    [Google Scholar]
  10. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68: 1825 1829 [CrossRef] [PubMed]
    [Google Scholar]
  11. Galperin MY, Brover V, Tolstoy I, Yutin N. Phylogenomic analysis of the family Peptostreptococcaceae (Clostridium cluster XI) and proposal for reclassification of Clostridium litorale (Fendrich et al. 1991) and Eubacterium acidaminophilum (Zindel et al. 1989) as Peptoclostridium litorale gen. nov. comb. nov. and Peptoclostridium acidaminophilum comb. nov. Int J Syst Evol Microbiol 2016; 66: 5506 5513 [CrossRef] [PubMed]
    [Google Scholar]
  12. Wade WG et al. Family II. Eubacteriaceae, Genus I. Eubacterium. In de Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W. (editors) Bergey’s Manual of Systematic Bacteriology, Volume 3: The Firmicutes New York: Springer; 2009 pp 865 891
    [Google Scholar]
  13. Slobodkin A. The Family Peptostreptococcaceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes Berlin, Heidelberg: Springer; 2014 pp 291 302
    [Google Scholar]
  14. Sizova MV, Chilaka A, Earl AM, Doerfert SN, Muller PA et al. High-quality draft genome sequences of five anaerobic oral bacteria and description of Peptoanaerobacter stomatis gen. nov., sp. nov., a new member of the family Peptostreptococcaceae . Stand Genomic Sci 2015; 10: 37 [CrossRef] [PubMed]
    [Google Scholar]
  15. Margaret BS, Krywolap GN. Eubacterium yurii subsp. yurii sp. nov. and Eubacterium yurii subsp. margaretiae subsp. nov.: test tube brush bacteria from subgingival dental plaque. Int J Syst Bacteriol 1986; 36: 145 149 [CrossRef]
    [Google Scholar]
  16. Cato EP, Moore LVH, Moore WEC. Fusobacterium alocis sp. nov. and Fusobacterium sulci sp. nov. from the Human Gingival Sulcus. Int J Syst Bacteriol 1985; 35: 475 477 [CrossRef]
    [Google Scholar]
  17. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994; 44: 812 826 [CrossRef] [PubMed]
    [Google Scholar]
  18. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19: 455 477 [CrossRef] [PubMed]
    [Google Scholar]
  19. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44: 6614 6624 [CrossRef] [PubMed]
    [Google Scholar]
  20. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68: 461 466 [CrossRef] [PubMed]
    [Google Scholar]
  21. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28: 3150 3152 [CrossRef] [PubMed]
    [Google Scholar]
  22. Yoon SH, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110: 1281 1286 [CrossRef] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  24. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81 91 [CrossRef] [PubMed]
    [Google Scholar]
  25. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106: 19126 19131 [CrossRef] [PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10: 2182 [CrossRef] [PubMed]
    [Google Scholar]
  27. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2019 [CrossRef] [PubMed]
    [Google Scholar]
  28. Holdeman L, Cato E, Moor W. Anaerobe Laboratory Manual , 4th Edition. Blacksburg, VA: Virginia Polytechnic Institute and State University, Anaerobe Laboratory; 1977
    [Google Scholar]
  29. Jousimies-Somer HR, Summanen P, Citron DM, Baron EJ, Wexler HM. Wadsworth Anaerobic Bacteriology Manual , 6th ed. Belmont: Star Publishing; 2002
    [Google Scholar]
  30. Tocheva EI, López-Garrido J, Hughes HV, Fredlund J, Kuru E et al. Peptidoglycan transformations during Bacillus subtilis sporulation. Mol Microbiol 2013; 88: 673 686 [CrossRef] [PubMed]
    [Google Scholar]
  31. Kremer JR, Mastronarde DN, McIntosh JR. Computer visualization of three-dimensional image data using IMOD. J Struct Biol 1996; 116: 71 76 [CrossRef] [PubMed]
    [Google Scholar]
  32. De la Cruz TE, Torres J. Gelatine hydrolysis test protocol 8 Microbe (ASM press); 2013 pp 1 9
    [Google Scholar]
  33. Bernard KA, Shuttleworth L, Munro C, Forbes-Faulkner JC, Pitt D et al. Propionibacterium australiense sp. nov. derived from granulomatous bovine lesions. Anaerobe 2002; 8: 41 47 [CrossRef]
    [Google Scholar]
  34. Gerritsen J, Fuentes S, Grievink W, van Niftrik L, Tindall BJ et al. Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastro-intestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter gen. nov. and Asaccharospora gen. nov.. Int J Syst Evol Microbiol 2014; 64: 1600 1616 [CrossRef] [PubMed]
    [Google Scholar]
  35. Bernard KA, Pacheco AL, Loomer C, Burdz T, Wiebe D et al. Corynebacterium lowii sp. nov. and Corynebacterium oculi sp. nov., derived from human clinical disease and an emended description of Corynebacterium mastitidis . Int J Syst Evol Microbiol 2016; 66: 2803 2812 [CrossRef] [PubMed]
    [Google Scholar]
  36. Ezaki T et al. Family VII. Peptostreptococcaceae fam. nov. In de Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W. (editors) Bergey’s Manual of Systematic Bacteriology, Volume 3: The Firmicutes New York: Springer; 2009 pp 1008 1015
    [Google Scholar]
  37. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32: 1792 1797 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004691
Loading
/content/journal/ijsem/10.1099/ijsem.0.004691
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error