1887

Abstract

A Gram-staining-negative, strictly aerobic, long-rod shaped with no flagellum and yellow-pigmented bacterium designated strain ZXX205, was isolated from the hadal seawater at the depth of 7500 m in the Mariana Trench, Pacific Ocean. Phylogenetic analysis based on 16S rRNA gene sequences placed strain ZXX205 within the genus and strain ZXX205 was most closely related to KCTC 52348 and KCTC 22026 with 96.9 % and 96.6 % sequence similarity, respectively. The sequence similarities to all other type strains were 96.3 % or less, and to the type strain LMG 22492 was 94.1 %. Growth occurred in the presence of 0–9.0 % (w/v) NaCl (optimum 3.0 %), at 4–45 °C (optimum 28 °C) and pH 6.0–9.0 (optimum pH 7.5). The sole respiratory quinone was menaquinone 6 (MK-6). The dominant cellular fatty acids (>10 %) of strain ZXX205 were iso-C, iso-C G, iso-C 3-OH and iso-C. The polar lipids profile contained predominantly phosphatidylethanolamine, four glycolipids, four unidentified aminolipids and three unidentified lipids. The genomic DNA G+C content was 35.5 %. The DNA–DNA relatedness (DDH) values between strain ZXX205 and the most closely related species and were 21.1 and 20.4 %, respectively. Based on polyphasic taxonomic analysis, strain ZXX205 is considered to represent a novel species in the genus of the family , for which the name is proposed. The type strain is ZXX205 (=MCCC 1K03851=JCM 33665).

Funding
This study was supported by the:
  • Xiao-HuaZhang , Fundamental Research Funds for Central Universities of the Central South University , (Award Nos. 201762009 and 201762017)
  • Xiao-HuaZhang , Innovative Research Group Project of the National Natural Science Foundation of China , (Award Nos. 91751202 and 41730530)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004687
2021-02-08
2021-02-26
Loading full text...

Full text loading...

References

  1. Nedashkovskaya OI, Kim SB, Han SK, Snauwaert C, Vancanneyt M et al. Winogradskyella thalassocola gen. nov., sp. nov., Winogradskyella epiphytica sp. nov. and Winogradskyella eximia sp. nov., marine bacteria of the family Flavobacteriaceae . Int J Syst Evol Microbiol 2005; 55: 49 55 [CrossRef] [PubMed]
    [Google Scholar]
  2. Yoon B-J, Byun H-D, Kim J-Y, Lee D-H, Kahng H-Y et al. Winogradskyella lutea sp. nov., isolated from seawater, and emended description of the genus Winogradskyella . Int J Syst Evol Microbiol 2011; 61: 1539 1543 [CrossRef] [PubMed]
    [Google Scholar]
  3. Nedashkovskaya OI, Vancanneyt M, Kim SB, Zhukova NV. Winogradskyella echinorum sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius . Int J Syst Evol Microbiol 2009; 59: 1465 1468 [CrossRef] [PubMed]
    [Google Scholar]
  4. Ivanova EP, Christen R, Gorshkova NM, Zhukova NV, Kurilenko VV et al. Winogradskyella exilis sp. nov., isolated from the starfish Stellaster equestris, and emended description of the genus Winogradskyella . Int J Syst Evol Microbiol 2010; 60: 1577 1580 [CrossRef] [PubMed]
    [Google Scholar]
  5. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV. Winogradskyella ulvae sp. nov., an epiphyte of a Pacific seaweed, and emended descriptions of the genus Winogradskyella and Winogradskyella thalassocola, Winogradskyella echinorum, Winogradskyella exilis and Winogradskyella eximia. Int J Syst Evol Microbiol 2012; 62: 1450 1456 [CrossRef] [PubMed]
    [Google Scholar]
  6. Begum Z, Srinivas TNR, Manasa P, Sailaja B, Sunil B et al. Winogradskyella psychrotolerans sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from Arctic sediment. Int J Syst Evol Microbiol 2013; 63: 1646 1652 [CrossRef] [PubMed]
    [Google Scholar]
  7. Lee JH, Kang JW, Shin SB, Seong CN. Winogradskyella flava sp. nov., isolated from the brown alga, Sargassum fulvellum . Int J Syst Evol Microbiol 2017; 67: 3540 3546 [CrossRef] [PubMed]
    [Google Scholar]
  8. Park S, Park J-M, Won S-M, Bae KS, Yoon J-H. Winogradskyella wandonensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2014; 64: 1520 1525 [CrossRef] [PubMed]
    [Google Scholar]
  9. Zhang D-C, Liu Y-X, Huang H-J, Weber K, Margesin R. Winogradskyella sediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2016; 66: 3157 3163 [CrossRef] [PubMed]
    [Google Scholar]
  10. Franco A, Busse H-J, Schubert P, Wilke T, Kämpfer P et al. Winogradskyella pocilloporae sp. nov. isolated from healthy tissue of the coral Pocillopora damicornis . Int J Syst Evol Microbiol 2018; 68: 1689 1696 [CrossRef] [PubMed]
    [Google Scholar]
  11. Park S, Park J-M, Won S-M, Yoon J-H. Winogradskyella crassostreae sp. nov., isolated from an oyster (Crassostrea gigas). Int J Syst Evol Microbiol 2015; 65: 2890 2895 [CrossRef] [PubMed]
    [Google Scholar]
  12. Schellenberg J, Busse H-J, Hardt M, Schubert P, Wilke T et al. Winogradskyella haliclonae sp. nov., isolated from a marine sponge of the genus Haliclona . Int J Syst Evol Microbiol 2017; 67: 4902 4910 [CrossRef] [PubMed]
    [Google Scholar]
  13. Zhao X, Liu J, Zhou S, Zheng Y, Wu Y et al. Diversity of culturable heterotrophic bacteria from the Mariana Trench and their ability to degrade macromolecules. Mar Life Sci Technol 2020; 2: 181 193 [CrossRef]
    [Google Scholar]
  14. Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A et al. Hadal biosphere: insight into the microbial ecosystem in the deepest Ocean on earth. Proc Natl Acad Sci U S A 2015; 112: E1230 E1236 [CrossRef] [PubMed]
    [Google Scholar]
  15. Liu J, Zheng Y, Lin H, Wang X, Li M et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome 2019; 7: 47 [CrossRef] [PubMed]
    [Google Scholar]
  16. Nunoura T, Hirai M, Yoshida-Takashima Y, Nishizawa M, Kawagucci S et al. Distribution and niche separation of planktonic microbial communities in the water columns from the surface to the Hadal waters of the Japan Trench under the eutrophic Ocean. Front Microbiol 2016; 7: 1261 [CrossRef] [PubMed]
    [Google Scholar]
  17. Peoples LM, Donaldson S, Osuntokun O, Xia Q, Nelson A et al. Vertically distinct microbial communities in the Mariana and Kermadec trenches. PLoS One 2018; 13: e0195102 [CrossRef] [PubMed]
    [Google Scholar]
  18. Ausubel F, Brent R, Kingston R, Moore D, Seidman J. Short protocols in molecular biology: a Compendium of Methods from Current Protocols in Molecular Biology , 3rd ed. New York: Wiley; 1995
    [Google Scholar]
  19. Zhang Z, Yu C, Wang X, Yu S, Zhang X-H. Arcobacter pacificus sp. nov., isolated from seawater of the South Pacific Gyre. Int J Syst Evol Microbiol 2016; 66: 542 547 [CrossRef] [PubMed]
    [Google Scholar]
  20. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1: 18 [CrossRef] [PubMed]
    [Google Scholar]
  21. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9: 75 [CrossRef] [PubMed]
    [Google Scholar]
  22. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 2007; 23: 673 679 [CrossRef] [PubMed]
    [Google Scholar]
  23. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35: 3100 3108 [CrossRef] [PubMed]
    [Google Scholar]
  24. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25: 955 964 [CrossRef] [PubMed]
    [Google Scholar]
  25. Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL et al. Rfam: updates to the RNA families database. Nucleic Acids Res 2009; 37: D136 D140 [CrossRef] [PubMed]
    [Google Scholar]
  26. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613 1617 [CrossRef] [PubMed]
    [Google Scholar]
  27. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110: 1281 1286 [CrossRef] [PubMed]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406 425 [CrossRef] [PubMed]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368 376 [CrossRef] [PubMed]
    [Google Scholar]
  30. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20: 406 416 [CrossRef]
    [Google Scholar]
  31. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870 1874 [CrossRef] [PubMed]
    [Google Scholar]
  32. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111 120 [CrossRef] [PubMed]
    [Google Scholar]
  33. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016; 44: D286 D293 [CrossRef]
    [Google Scholar]
  34. Beveridge TJ, Lawrence JR, Murray RG. Sampling and staining for light microscopy. Methods for General and Molecular Microbiology , 3rd ed. American Society of Microbiology; 2007 pp 19 33
    [Google Scholar]
  35. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049 1070 [CrossRef] [PubMed]
    [Google Scholar]
  36. Zhou S, Ren Q, Li Y, Liu J, Wang X et al. Abyssibacter profundi gen. nov., sp. nov., a marine bacterium isolated from seawater of the Mariana Trench. Int J Syst Evol Microbiol 2018; 68: 3424 3429 [CrossRef] [PubMed]
    [Google Scholar]
  37. Yu C, Yu S, Zhang Z, Li Z, Zhang X-H. Oceanobacillus pacificus sp. nov., isolated from a deep-sea sediment. Int J Syst Evol Microbiol 2014; 64: 1278 1283 [CrossRef] [PubMed]
    [Google Scholar]
  38. Bernardet JF, Bowman JP. The Genus Flavobacterium New York: Springer; 2006
    [Google Scholar]
  39. Yoon J-H, Lee K-C, Kho YH, Kang KH, Kim C-J et al. Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2002; 52: 123 130 [CrossRef] [PubMed]
    [Google Scholar]
  40. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News Lett 1990; 20: 1 6
    [Google Scholar]
  41. Xie C-H, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003; 49: 345 349 [CrossRef] [PubMed]
    [Google Scholar]
  42. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233 241 [CrossRef]
    [Google Scholar]
  43. Collins MD, Shah HN. Fatty acid, menaquinone and polar lipid composition of Rothia dentocariosa. Arch Microbiol 1984; 137: 247 249 [CrossRef]
    [Google Scholar]
  44. Komagata K, Suzuki K-I. 4 Lipid and Cell-Wall Analysis in Bacterial Systematics Methods in microbiology: Elsevier; 1988 pp 161 207
    [Google Scholar]
  45. Montero-Calasanz MDC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium . Int J Syst Evol Microbiol 2013; 63: 4386 4395 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004687
Loading
/content/journal/ijsem/10.1099/ijsem.0.004687
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error