sp. nov., isolated from forest soil Free

Abstract

A Gram-stain-positive, aerobic and rod-shaped bacterial strain, designated JH1-1, was isolated from a forest soil sample collected in Suwon, Gyeonggi-do, Republic of Korea. Strain JH1-1 could grow at 10–35 °C (optimum, 28–30 °C), pH 4.5–8.5 and tolerated 5 % (w/v) NaCl. Strain JH1-1 was most closely related to members of the genus , namely LC6 (98.5 % similarity), TGA (98.4 %), CCM 1646 (97.8 %), THG-GM18 (97.5 %) and P3B162 (97.3 %). The strain grew well on Reasoner's 2A agar, tryptone soya agar, nutrient agar, Mueller–Hinton agar and Luria–Bertani agar. The major polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, unidentified phospholipid and unidentified glycolipids. The major respiratory quinone was MK-9(H). The main fatty acids were C anteiso, C iso, C iso and C anteiso. The DNA G+C content of the isolated strain based on the whole genome sequence was 63.6 mol%. The average nucleotide identity and digital DNA–DNA hybridization values between strain JH1-1 and its reference type strains ranged from 81.3 to 85.4 % and from 21.1 to 29.1 %, respectively. Based on phenotypic, chemotypic and genotypic evidence, strain JH1-1 could be differentiated phylogenetically and phenotypically from the recognized species of the genus . Therefore, strain JH1-1 is considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is JH1-1 (=KACC 21385=JCM 33641).

Funding
This study was supported by the:
  • Kyonggi University (Award 2019-037)
    • Principle Award Recipient: JaisooKim
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004686
2021-02-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/3/ijsem004686.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004686&mimeType=html&fmt=ahah

References

  1. Conn HJ, Dimmick I. SoIl bacteria similar in morphology to Mycobacterium and Corynebacterium . J Bacteriol 1947; 54:291–303 [View Article][PubMed]
    [Google Scholar]
  2. Koch C, Schumann P, Stackerbrandt E. Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter . Int J Syst Bacteriol 1995; 45:837–839 [View Article][PubMed]
    [Google Scholar]
  3. Busse HJ. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudogluta. Int J Syst Evol Microbiol 2016; 66:9–37
    [Google Scholar]
  4. Kämpfer P, Busse HJ, Schumann P, Criscuolo A, Clermont D et al. Arthrobacter ulcerisalmonis sp. nov., isolated from an ulcer of a farmed Atlantic salmon (Salmo salar), and emended description of the genus Arthrobacter sensu lato. Int J Syst Evol Microbiol 2020; 70:1963–1968 [View Article][PubMed]
    [Google Scholar]
  5. Busse HJ, Moore ERB. Reclassification of Arthrobacter nasiphocae (Collins et al. 2002) as Falsarthrobacter nasiphocae gen. nov., comb. nov. Int J Syst Evol Microbiol 2018; 68:1361–1364 [View Article][PubMed]
    [Google Scholar]
  6. Goodfellow M, Peter Kämpfer H-JB, Martha E. The Actinobacteria, Part A. Bergey’s Manual of Systematic Bacteriology Springer; 2012 pp 578–623
    [Google Scholar]
  7. Rosenberg E, Delong EF, Thompson F. The genus Arthrobacter . The Prokaryotes: Actinobacteria 2014 pp 105–133
    [Google Scholar]
  8. Yan R, Liu D, Fu Y, Zhang Y, Ju H et al. Arthrobacter celericrescens sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2019; 69:3093–3099 [View Article][PubMed]
    [Google Scholar]
  9. Zhang Q, Oh M, Kim JH, Kanjanasuntree R, Konkit M et al. Arthrobacter paludis sp. nov., isolated from a marsh. Int J Syst Evol Microbiol 2018; 68:47–51 [View Article][PubMed]
    [Google Scholar]
  10. Yan R, Fu Y, Liu D, Jiang S, Ju H et al. Arthrobacter silvisoli sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2018; 68:3892–3896 [View Article][PubMed]
    [Google Scholar]
  11. Lee SA, Kim JM, Cho H, Kim SJ, Ahn JH et al. Arthrobacter silviterrae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:4546–4551 [View Article][PubMed]
    [Google Scholar]
  12. Hu Q-W, Chu X, Xiao M, Li C-T, Yan Z-F et al. Arthrobacter deserti sp. nov., isolated from a desert soil sample. Int J Syst Evol Microbiol 2016; 66:2035–2040 [View Article][PubMed]
    [Google Scholar]
  13. Yu X-Y, Zhang L, Ren B, Yang N, Liu M et al. Arthrobacter liuii sp. nov., resuscitated from Xinjiang desert soil. Int J Syst Evol Microbiol 2015; 65:896–901 [View Article][PubMed]
    [Google Scholar]
  14. Huang Z, Bao YY, Yuan TT, Wang GX, He LY et al. Arthrobacter nanjingensis sp. nov., a mineral-weathering bacterium isolated from forest soil. Int J Syst Evol Microbiol 2015; 65:365–369 [View Article][PubMed]
    [Google Scholar]
  15. Park YJ, Kook MC, Ngo HTT, Kim K-Y, Park S-Y et al. Arthrobacter bambusae sp. nov., isolated from soil of a bamboo grove. Int J Syst Evol Microbiol 2014; 64:3069–3074 [View Article][PubMed]
    [Google Scholar]
  16. Hoang VA, Kim YJ, Nguyen NL, Yang DC. Arthrobacter gyeryongensis sp. nov., isolated from soil of a Gynostemma pentaphyllum field. Int J Syst Evol Microbiol 2014; 64:420–425 [View Article][PubMed]
    [Google Scholar]
  17. Cheng J, Zhang MY, Zhao JC, Xu H, Zhang Y et al. Arthrobacter ginkgonis sp. nov., an actinomycete isolated from rhizosphere of Ginkgo biloba L. Int J Syst Evol Microbiol 2017; 67:319–324 [View Article][PubMed]
    [Google Scholar]
  18. Krishnan R, Menon RR, Tanaka N, Busse HJ, Krishnamurthi S et al. Arthrobacter pokkalii sp nov, a novel plant associated actinobacterium with plant beneficial properties, isolated from saline tolerant pokkali rice, Kerala, India. PLoS One 2016; 11:1–18 [View Article][PubMed]
    [Google Scholar]
  19. Liu Q, Liu HC, Zhou YG, Xin YH. Genetic diversity of glacier-inhabiting Cryobacterium bacteria in China and description of Cryobacterium zongtaii sp. nov. and Arthrobacter glacialis sp. nov. Syst Appl Microbiol 2019; 42:168–177 [View Article][PubMed]
    [Google Scholar]
  20. Liu Q, Xin YH, Chen XL, Liu HC, Zhou YG et al. Arthrobacter ruber sp. nov., isolated from glacier ice. Int J Syst Evol Microbiol 2018; 68:1616–1621 [View Article][PubMed]
    [Google Scholar]
  21. Margesin R, Schumann P, Zhang DC, Redzic M, Zhou YG et al. Arthrobacter cryoconiti sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 2012; 62:397–402 [View Article][PubMed]
    [Google Scholar]
  22. Funke G, Hutson RA, Bernard KA, Pfyffer GE, Wauters G et al. Isolation of Arthrobacter spp. from clinical specimens and description of Arthrobacter cumminsii sp. nov. and Arthrobacter woluwensis sp. nov. J Clin Microbiol 1996; 34:2356–2363 [View Article][PubMed]
    [Google Scholar]
  23. Wauters G, Charlier J, Janssens M, Delmée M. Identification of Arthrobacter oxydans, Arthrobacter luteolus sp. nov., and Arthrobacter albus sp. nov., isolated from human clinical specimens. J Clin Microbiol 2000; 38:2412–2415 [View Article][PubMed]
    [Google Scholar]
  24. Lee JY, Hyun DW, Soo Kim P, Sik Kim H, Shin N-R et al. Arthrobacter echini sp. nov., isolated from the gut of a purple sea urchin, Heliocidaris crassispina . Int J Syst Evol Microbiol 2016; 66:1887–1893 [View Article][PubMed]
    [Google Scholar]
  25. İnce İkbal Agah, Demirbağ Z, Katı H. Arthrobacter pityocampae sp. nov., isolated from Thaumetopoea pityocampa (Lep., Thaumetopoeidae). Int J Syst Evol Microbiol 2014; 64:3384–3389 [View Article][PubMed]
    [Google Scholar]
  26. Margesin R, Schumann P, Spröer C, Gounot AM. Arthrobacter psychrophenolicus sp. nov., isolated from an alpine ice cave. Int J Syst Evol Microbiol 2004; 54:2067–2072 [View Article][PubMed]
    [Google Scholar]
  27. Storms V, Devriese LA, Coopman R, Schumann P, Vyncke F et al. Arthrobacter gandavensis sp. nov., for strains of veterinary origin. Int J Syst Evol Microbiol 2003; 53:1881–1884 [View Article][PubMed]
    [Google Scholar]
  28. Osorio CR, Barja JL, Hutson RA, Collins MD. Arthrobacter rhombi sp. nov., isolated from Greenland halibut (Reinhardtius hippoglossoides). Int J Syst Bacteriol 1999; 49 Pt 3:1217–1220 [View Article][PubMed]
    [Google Scholar]
  29. Ding L, Hirose T, Yokota A. Four novel Arthrobacter species isolated from filtration substrate. Int J Syst Evol Microbiol 2009; 59:856–862 [View Article][PubMed]
    [Google Scholar]
  30. Chang HW, Bae JW, Nam Y-D, Kwon H-Y, Park JR et al. Arthrobacter subterraneus sp. nov., isolated from deep subsurface water of the South Coast of Korea. J Microbiol Biotechnol 2007; 17:1875–1879[PubMed]
    [Google Scholar]
  31. Chen YG, Tang SK, Zhang YQ, Li Z-Y, Yi L-B et al. Arthrobacter halodurans sp. nov., a new halotolerant bacterium isolated from sea water. Antonie van Leeuwenhoek 2009; 96:63–70 [View Article][PubMed]
    [Google Scholar]
  32. Heyrman J, Verbeeren J, Schumann P, Swings J, De Vos P. Six novel Arthrobacter species isolated from deteriorated mural paintings. Int J Syst Evol Microbiol 2005; 55:1457–1464 [View Article][PubMed]
    [Google Scholar]
  33. Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H, Lui H et al. Rothia aeria sp. nov., Rhodococcus baikonurensis sp. nov. and Arthrobacter russicus sp. nov., isolated from air in the Russian space laboratory miR. Int J Syst Evol Microbiol 2004; 54:827–835 [View Article][PubMed]
    [Google Scholar]
  34. Reddy GS, Aggarwal RK, Matsumoto GI, Shivaji S. Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 2000; 50 Pt 4:1553–1561 [View Article][PubMed]
    [Google Scholar]
  35. Igarashi Y, Yamamoto K, Fukuda T, Shojima A, Nakayama J et al. Arthroamide, a cyclic depsipeptide with quorum sensing inhibitory activity from Arthrobacter sp. J Nat Prod 2015; 78:2827–2831 [View Article][PubMed]
    [Google Scholar]
  36. Li Y, Li Q, Hao D, Jiang D, Luo Y et al. Production, purification, and antibiofilm activity of a novel exopolysaccharide from Arthrobacter sp. B4. Prep Biochem Biotechnol 2015; 45:192–204 [View Article][PubMed]
    [Google Scholar]
  37. Wietz M, Månsson M, Bowman JS, Blom N, Ng Y et al. Wide distribution of closely related, antibiotic-producing Arthrobacter strains throughout the Arctic Ocean. Appl Environ Microbiol 2012; 78:2039–2042 [View Article][PubMed]
    [Google Scholar]
  38. Kamigiri K, Tokunaga T, Shibazaki M, Setiawan B, Rantiatmodjo RM et al. YM-30059, a novel quinolone antibiotic produced by Arthrobacter sp. J Antibiot 1996; 49:823–825 [View Article][PubMed]
    [Google Scholar]
  39. Munaganti RK, Muvva V, Konda S, Naragani K, Mangamuri UK et al. Antimicrobial profile of Arthrobacter kerguelensis VL-RK_09 isolated from Mango orchards. Braz J Microbiol 2016; 47:1030–1038 [View Article][PubMed]
    [Google Scholar]
  40. Pham VHT, Kim J. Cultivation of unculturable soil bacteria. Trends Biotechnol 2012; 30:475–484 [View Article][PubMed]
    [Google Scholar]
  41. Tindall BJ, Garrity GM. Proposals to clarify how type strains are deposited and made available to the scientific community for the purpose of systematic research. Int J Syst Evol Microbiol 2008; 58:1987–1990 [View Article][PubMed]
    [Google Scholar]
  42. Cheng HR, Jiang N. Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol Lett 2006; 28:55–59 [View Article][PubMed]
    [Google Scholar]
  43. Yoon SH, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  44. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  45. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  46. Kumar S, Stecher G, Tamura K. mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  47. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  48. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  49. Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol 2014; 31:1077–1088 [View Article][PubMed]
    [Google Scholar]
  50. Ha SM, Kim CK, Roh J, Byun JH, Yang SJ et al. Application of the whole genome-based bacterial identification system, TRUEBAC ID, using clinical isolates that were not identified with three matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems. Ann Lab Med 2019; 39:530–536 [View Article][PubMed]
    [Google Scholar]
  51. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  52. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75–15 [View Article]
    [Google Scholar]
  53. Grant JR, Stothard P. The CGView server: a comparative genomics tool for circular genomes. Nucleic Acids Res 2008; 36:181–184 [View Article][PubMed]
    [Google Scholar]
  54. Adamek M, Spohn M, Stegmann E, Ziemert N. Mining bacterial genomes for secondary metabolite gene clusters. In Sass P. editor Antibiotics Method and Protocols Humana Press; 2017 pp 23–49
    [Google Scholar]
  55. Lanyi B. Classical and rapid identification method for medically important bacteria. In Cowell R. editor Method in Microbiology 19 Academic Press; 1987 pp 1–65
    [Google Scholar]
  56. Moyes RB, Reynolds J, Breakwell DP. Differential staining of bacteria: Gram stain. Curr Protoc Microbiol 2009; Appendix 3:1–8 [View Article][PubMed]
    [Google Scholar]
  57. Trinh NH, Kim J. Paraburkholderia flava sp. nov., isolated from cool temperate forest soil. Int J Syst Evol Microbiol 2020; 70:2509–2514 [View Article][PubMed]
    [Google Scholar]
  58. McIlvaine TC. A buffer solution for colorimetric comparison. J Biol Chem 1921; 49:183–186 [View Article]
    [Google Scholar]
  59. Krieg NR, Padgett PJ. Phenotype and physiological characterization method. In Rainey F. editor Methods in Microbiology 38 Academic Press; 2011 pp 15–60
    [Google Scholar]
  60. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA. editor Methods for General and Molecular Microbiology ASM Press; 2007 pp 330–393
    [Google Scholar]
  61. Sierra G. A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 1957; 23:15–22 [View Article][PubMed]
    [Google Scholar]
  62. Hiraishi A, Shin YK, Sugiyama J. Rapid profiling of bacterial quinones by two-dimensional thin-layer chromatography. Lett Appl Microbiol 1992; 14:170–173 [View Article]
    [Google Scholar]
  63. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911-7 [View Article][PubMed]
    [Google Scholar]
  64. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article][PubMed]
    [Google Scholar]
  65. Becker B, Lechevalier MP, Gordon RE, Lechevalier HA. Rapid differentiation between Nocardia and Streptomyces by paper. Appl Microbiol 1964; 12:421–423
    [Google Scholar]
  66. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. Tech Note 2001; 101:1–6
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004686
Loading
/content/journal/ijsem/10.1099/ijsem.0.004686
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed