1887

Abstract

A Gram-stain-positive, aerobic and rod-shaped bacterial strain, designated JH1-1, was isolated from a forest soil sample collected in Suwon, Gyeonggi-do, Republic of Korea. Strain JH1-1 could grow at 10–35 °C (optimum, 28–30 °C), pH 4.5–8.5 and tolerated 5 % (w/v) NaCl. Strain JH1-1 was most closely related to members of the genus , namely LC6 (98.5 % similarity), TGA (98.4 %), CCM 1646 (97.8 %), THG-GM18 (97.5 %) and P3B162 (97.3 %). The strain grew well on Reasoner's 2A agar, tryptone soya agar, nutrient agar, Mueller–Hinton agar and Luria–Bertani agar. The major polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, unidentified phospholipid and unidentified glycolipids. The major respiratory quinone was MK-9(H). The main fatty acids were C anteiso, C iso, C iso and C anteiso. The DNA G+C content of the isolated strain based on the whole genome sequence was 63.6 mol%. The average nucleotide identity and digital DNA–DNA hybridization values between strain JH1-1 and its reference type strains ranged from 81.3 to 85.4 % and from 21.1 to 29.1 %, respectively. Based on phenotypic, chemotypic and genotypic evidence, strain JH1-1 could be differentiated phylogenetically and phenotypically from the recognized species of the genus . Therefore, strain JH1-1 is considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is JH1-1 (=KACC 21385=JCM 33641).

Funding
This study was supported by the:
  • JaisooKim , Kyonggi University , (Award 2019-037)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004686
2021-02-08
2021-02-26
Loading full text...

Full text loading...

References

  1. Conn HJ, Dimmick I. SoIl bacteria similar in morphology to Mycobacterium and Corynebacterium . J Bacteriol 1947; 54: 291 303 [CrossRef] [PubMed]
    [Google Scholar]
  2. Koch C, Schumann P, Stackerbrandt E. Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter . Int J Syst Bacteriol 1995; 45: 837 839 [CrossRef] [PubMed]
    [Google Scholar]
  3. Busse HJ. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudogluta. Int J Syst Evol Microbiol 2016; 66: 9 37
    [Google Scholar]
  4. Kämpfer P, Busse HJ, Schumann P, Criscuolo A, Clermont D et al. Arthrobacter ulcerisalmonis sp. nov., isolated from an ulcer of a farmed Atlantic salmon (Salmo salar), and emended description of the genus Arthrobacter sensu lato. Int J Syst Evol Microbiol 2020; 70: 1963 1968 [CrossRef] [PubMed]
    [Google Scholar]
  5. Busse HJ, Moore ERB. Reclassification of Arthrobacter nasiphocae (Collins et al. 2002) as Falsarthrobacter nasiphocae gen. nov., comb. nov. Int J Syst Evol Microbiol 2018; 68: 1361 1364 [CrossRef] [PubMed]
    [Google Scholar]
  6. Goodfellow M, Peter Kämpfer H-JB, Martha E. The Actinobacteria, Part A. Bergey’s Manual of Systematic Bacteriology Springer; 2012 pp 578 623
    [Google Scholar]
  7. Rosenberg E, Delong EF, Thompson F. The genus Arthrobacter . The Prokaryotes: Actinobacteria 2014 pp 105 133
    [Google Scholar]
  8. Yan R, Liu D, Fu Y, Zhang Y, Ju H et al. Arthrobacter celericrescens sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2019; 69: 3093 3099 [CrossRef] [PubMed]
    [Google Scholar]
  9. Zhang Q, Oh M, Kim JH, Kanjanasuntree R, Konkit M et al. Arthrobacter paludis sp. nov., isolated from a marsh. Int J Syst Evol Microbiol 2018; 68: 47 51 [CrossRef] [PubMed]
    [Google Scholar]
  10. Yan R, Fu Y, Liu D, Jiang S, Ju H et al. Arthrobacter silvisoli sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2018; 68: 3892 3896 [CrossRef] [PubMed]
    [Google Scholar]
  11. Lee SA, Kim JM, Cho H, Kim SJ, Ahn JH et al. Arthrobacter silviterrae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017; 67: 4546 4551 [CrossRef] [PubMed]
    [Google Scholar]
  12. Hu Q-W, Chu X, Xiao M, Li C-T, Yan Z-F et al. Arthrobacter deserti sp. nov., isolated from a desert soil sample. Int J Syst Evol Microbiol 2016; 66: 2035 2040 [CrossRef] [PubMed]
    [Google Scholar]
  13. Yu X-Y, Zhang L, Ren B, Yang N, Liu M et al. Arthrobacter liuii sp. nov., resuscitated from Xinjiang desert soil. Int J Syst Evol Microbiol 2015; 65: 896 901 [CrossRef] [PubMed]
    [Google Scholar]
  14. Huang Z, Bao YY, Yuan TT, Wang GX, He LY et al. Arthrobacter nanjingensis sp. nov., a mineral-weathering bacterium isolated from forest soil. Int J Syst Evol Microbiol 2015; 65: 365 369 [CrossRef] [PubMed]
    [Google Scholar]
  15. Park YJ, Kook MC, Ngo HTT, Kim K-Y, Park S-Y et al. Arthrobacter bambusae sp. nov., isolated from soil of a bamboo grove. Int J Syst Evol Microbiol 2014; 64: 3069 3074 [CrossRef] [PubMed]
    [Google Scholar]
  16. Hoang VA, Kim YJ, Nguyen NL, Yang DC. Arthrobacter gyeryongensis sp. nov., isolated from soil of a Gynostemma pentaphyllum field. Int J Syst Evol Microbiol 2014; 64: 420 425 [CrossRef] [PubMed]
    [Google Scholar]
  17. Cheng J, Zhang MY, Zhao JC, Xu H, Zhang Y et al. Arthrobacter ginkgonis sp. nov., an actinomycete isolated from rhizosphere of Ginkgo biloba L. Int J Syst Evol Microbiol 2017; 67: 319 324 [CrossRef] [PubMed]
    [Google Scholar]
  18. Krishnan R, Menon RR, Tanaka N, Busse HJ, Krishnamurthi S et al. Arthrobacter pokkalii sp nov, a novel plant associated actinobacterium with plant beneficial properties, isolated from saline tolerant pokkali rice, Kerala, India. PLoS One 2016; 11: 1 18 [CrossRef] [PubMed]
    [Google Scholar]
  19. Liu Q, Liu HC, Zhou YG, Xin YH. Genetic diversity of glacier-inhabiting Cryobacterium bacteria in China and description of Cryobacterium zongtaii sp. nov. and Arthrobacter glacialis sp. nov. Syst Appl Microbiol 2019; 42: 168 177 [CrossRef] [PubMed]
    [Google Scholar]
  20. Liu Q, Xin YH, Chen XL, Liu HC, Zhou YG et al. Arthrobacter ruber sp. nov., isolated from glacier ice. Int J Syst Evol Microbiol 2018; 68: 1616 1621 [CrossRef] [PubMed]
    [Google Scholar]
  21. Margesin R, Schumann P, Zhang DC, Redzic M, Zhou YG et al. Arthrobacter cryoconiti sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 2012; 62: 397 402 [CrossRef] [PubMed]
    [Google Scholar]
  22. Funke G, Hutson RA, Bernard KA, Pfyffer GE, Wauters G et al. Isolation of Arthrobacter spp. from clinical specimens and description of Arthrobacter cumminsii sp. nov. and Arthrobacter woluwensis sp. nov. J Clin Microbiol 1996; 34: 2356 2363 [CrossRef] [PubMed]
    [Google Scholar]
  23. Wauters G, Charlier J, Janssens M, Delmée M. Identification of Arthrobacter oxydans, Arthrobacter luteolus sp. nov., and Arthrobacter albus sp. nov., isolated from human clinical specimens. J Clin Microbiol 2000; 38: 2412 2415 [CrossRef] [PubMed]
    [Google Scholar]
  24. Lee JY, Hyun DW, Soo Kim P, Sik Kim H, Shin N-R et al. Arthrobacter echini sp. nov., isolated from the gut of a purple sea urchin, Heliocidaris crassispina . Int J Syst Evol Microbiol 2016; 66: 1887 1893 [CrossRef] [PubMed]
    [Google Scholar]
  25. İnce İkbal Agah, Demirbağ Z, Katı H. Arthrobacter pityocampae sp. nov., isolated from Thaumetopoea pityocampa (Lep., Thaumetopoeidae). Int J Syst Evol Microbiol 2014; 64: 3384 3389 [CrossRef] [PubMed]
    [Google Scholar]
  26. Margesin R, Schumann P, Spröer C, Gounot AM. Arthrobacter psychrophenolicus sp. nov., isolated from an alpine ice cave. Int J Syst Evol Microbiol 2004; 54: 2067 2072 [CrossRef] [PubMed]
    [Google Scholar]
  27. Storms V, Devriese LA, Coopman R, Schumann P, Vyncke F et al. Arthrobacter gandavensis sp. nov., for strains of veterinary origin. Int J Syst Evol Microbiol 2003; 53: 1881 1884 [CrossRef] [PubMed]
    [Google Scholar]
  28. Osorio CR, Barja JL, Hutson RA, Collins MD. Arthrobacter rhombi sp. nov., isolated from Greenland halibut (Reinhardtius hippoglossoides). Int J Syst Bacteriol 1999; 49 Pt 3: 1217 1220 [CrossRef] [PubMed]
    [Google Scholar]
  29. Ding L, Hirose T, Yokota A. Four novel Arthrobacter species isolated from filtration substrate. Int J Syst Evol Microbiol 2009; 59: 856 862 [CrossRef] [PubMed]
    [Google Scholar]
  30. Chang HW, Bae JW, Nam Y-D, Kwon H-Y, Park JR et al. Arthrobacter subterraneus sp. nov., isolated from deep subsurface water of the South Coast of Korea. J Microbiol Biotechnol 2007; 17: 1875 1879 [PubMed]
    [Google Scholar]
  31. Chen YG, Tang SK, Zhang YQ, Li Z-Y, Yi L-B et al. Arthrobacter halodurans sp. nov., a new halotolerant bacterium isolated from sea water. Antonie van Leeuwenhoek 2009; 96: 63 70 [CrossRef] [PubMed]
    [Google Scholar]
  32. Heyrman J, Verbeeren J, Schumann P, Swings J, De Vos P. Six novel Arthrobacter species isolated from deteriorated mural paintings. Int J Syst Evol Microbiol 2005; 55: 1457 1464 [CrossRef] [PubMed]
    [Google Scholar]
  33. Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H, Lui H et al. Rothia aeria sp. nov., Rhodococcus baikonurensis sp. nov. and Arthrobacter russicus sp. nov., isolated from air in the Russian space laboratory miR. Int J Syst Evol Microbiol 2004; 54: 827 835 [CrossRef] [PubMed]
    [Google Scholar]
  34. Reddy GS, Aggarwal RK, Matsumoto GI, Shivaji S. Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 2000; 50 Pt 4: 1553 1561 [CrossRef] [PubMed]
    [Google Scholar]
  35. Igarashi Y, Yamamoto K, Fukuda T, Shojima A, Nakayama J et al. Arthroamide, a cyclic depsipeptide with quorum sensing inhibitory activity from Arthrobacter sp. J Nat Prod 2015; 78: 2827 2831 [CrossRef] [PubMed]
    [Google Scholar]
  36. Li Y, Li Q, Hao D, Jiang D, Luo Y et al. Production, purification, and antibiofilm activity of a novel exopolysaccharide from Arthrobacter sp. B4. Prep Biochem Biotechnol 2015; 45: 192 204 [CrossRef] [PubMed]
    [Google Scholar]
  37. Wietz M, Månsson M, Bowman JS, Blom N, Ng Y et al. Wide distribution of closely related, antibiotic-producing Arthrobacter strains throughout the Arctic Ocean. Appl Environ Microbiol 2012; 78: 2039 2042 [CrossRef] [PubMed]
    [Google Scholar]
  38. Kamigiri K, Tokunaga T, Shibazaki M, Setiawan B, Rantiatmodjo RM et al. YM-30059, a novel quinolone antibiotic produced by Arthrobacter sp. J Antibiot 1996; 49: 823 825 [CrossRef] [PubMed]
    [Google Scholar]
  39. Munaganti RK, Muvva V, Konda S, Naragani K, Mangamuri UK et al. Antimicrobial profile of Arthrobacter kerguelensis VL-RK_09 isolated from Mango orchards. Braz J Microbiol 2016; 47: 1030 1038 [CrossRef] [PubMed]
    [Google Scholar]
  40. Pham VHT, Kim J. Cultivation of unculturable soil bacteria. Trends Biotechnol 2012; 30: 475 484 [CrossRef] [PubMed]
    [Google Scholar]
  41. Tindall BJ, Garrity GM. Proposals to clarify how type strains are deposited and made available to the scientific community for the purpose of systematic research. Int J Syst Evol Microbiol 2008; 58: 1987 1990 [CrossRef] [PubMed]
    [Google Scholar]
  42. Cheng HR, Jiang N. Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol Lett 2006; 28: 55 59 [CrossRef] [PubMed]
    [Google Scholar]
  43. Yoon SH, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613 1617 [CrossRef] [PubMed]
    [Google Scholar]
  44. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28: 1823 1829 [CrossRef] [PubMed]
    [Google Scholar]
  45. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406 425 [CrossRef] [PubMed]
    [Google Scholar]
  46. Kumar S, Stecher G, Tamura K. mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870 1874 [CrossRef] [PubMed]
    [Google Scholar]
  47. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783 791 [CrossRef] [PubMed]
    [Google Scholar]
  48. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111 120 [CrossRef] [PubMed]
    [Google Scholar]
  49. Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol 2014; 31: 1077 1088 [CrossRef] [PubMed]
    [Google Scholar]
  50. Ha SM, Kim CK, Roh J, Byun JH, Yang SJ et al. Application of the whole genome-based bacterial identification system, TRUEBAC ID, using clinical isolates that were not identified with three matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems. Ann Lab Med 2019; 39: 530 536 [CrossRef] [PubMed]
    [Google Scholar]
  51. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  52. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9: 75 15 [CrossRef]
    [Google Scholar]
  53. Grant JR, Stothard P. The CGView server: a comparative genomics tool for circular genomes. Nucleic Acids Res 2008; 36: 181 184 [CrossRef] [PubMed]
    [Google Scholar]
  54. Adamek M, Spohn M, Stegmann E, Ziemert N. Mining bacterial genomes for secondary metabolite gene clusters. In Sass P. editor Antibiotics Method and Protocols Humana Press; 2017 pp 23 49
    [Google Scholar]
  55. Lanyi B. Classical and rapid identification method for medically important bacteria. In Cowell R. editor Method in Microbiology 19 Academic Press; 1987 pp 1 65
    [Google Scholar]
  56. Moyes RB, Reynolds J, Breakwell DP. Differential staining of bacteria: Gram stain. Curr Protoc Microbiol 2009; Appendix 3: 1 8 [CrossRef] [PubMed]
    [Google Scholar]
  57. Trinh NH, Kim J. Paraburkholderia flava sp. nov., isolated from cool temperate forest soil. Int J Syst Evol Microbiol 2020; 70: 2509 2514 [CrossRef] [PubMed]
    [Google Scholar]
  58. McIlvaine TC. A buffer solution for colorimetric comparison. J Biol Chem 1921; 49: 183 186 [CrossRef]
    [Google Scholar]
  59. Krieg NR, Padgett PJ. Phenotype and physiological characterization method. In Rainey F. editor Methods in Microbiology 38 Academic Press; 2011 pp 15 60
    [Google Scholar]
  60. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA. editor Methods for General and Molecular Microbiology ASM Press; 2007 pp 330 393
    [Google Scholar]
  61. Sierra G. A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 1957; 23: 15 22 [CrossRef] [PubMed]
    [Google Scholar]
  62. Hiraishi A, Shin YK, Sugiyama J. Rapid profiling of bacterial quinones by two-dimensional thin-layer chromatography. Lett Appl Microbiol 1992; 14: 170 173 [CrossRef]
    [Google Scholar]
  63. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37: 911-7 [CrossRef] [PubMed]
    [Google Scholar]
  64. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28: 226 231 [CrossRef] [PubMed]
    [Google Scholar]
  65. Becker B, Lechevalier MP, Gordon RE, Lechevalier HA. Rapid differentiation between Nocardia and Streptomyces by paper. Appl Microbiol 1964; 12: 421 423
    [Google Scholar]
  66. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. Tech Note 2001; 101: 1 6
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004686
Loading
/content/journal/ijsem/10.1099/ijsem.0.004686
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error