1887

Abstract

A Gram-stain-negative, rod-shaped and aerobic bacterial strain, named Ery12, was isolated from the overlying water of the Lau Basin in the Southwest Pacific Ocean. Strain Ery12 showed high 16S rRNA gene sequences similarity to MS1-4 (99.9 %), MCCC 1K03311 (98.1 %), NBRC 107699 (97.3 %) and exhibited ≤97.0 % sequence similarity with other type strains of species with validly published names. Growth was observed in media with 0–10.0 % NaCl (optimum 0–1.0 %, w/v), pH 5.0–9.5 (optimum 6.0–7.0) and 10–42 °C (optimum 30–37 °C). The predominant respiratory quinone was ubiquinone 10 (Q-10). The major cellular fatty acid was summed feature 8 (C 7 and/or C 6). The major polar lipids were sphingoglycolipid, phosphatidyglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, three unidentified glycolipids, one unidentified aminoglycolipid and one unidentified lipid. The DNA G+C content was 60.8 %. The ANI and DDH values between strain Ery12 and the type strains of its closely related species were 71.0- 91.8 % and 19.5- 44.6 %, respectively. According to the phenotypic, chemotaxonomic, phylogenetic and genomic data, strain Ery12 represents a novel species of the genus , for which the name is proposed. The type strain is Ery12 (=CGMCC 1.16500 =MCCC 1A04421=KCTC 62388). We further propose to reclassify and as comb. nov. and comb. nov., respectively.

Funding
This study was supported by the:
  • Xue-WeiXu , Ningbo Public Service Platform for High-Value Utilization of Marine Biological Resources , (Award NBHY-2017-P2)
  • Xue-WeiXu , National Natural Science Foundation of China , (Award 91851114)
  • Xue-WeiXu , National Natural Science Foundation of China , (Award 31770004)
  • YanGao , National Natural Science Foundation of China , (Award 41806204)
  • Yue-HongWu , Scientific Research Fund of the Second Institute of Oceanography, MNR , (Award JT1702)
  • YanGao , National Key R&D Program of China , (Award 2018YFC0310704)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004678
2021-02-02
2021-02-26
Loading full text...

Full text loading...

References

  1. Xu L, Sun C, Fang C, Oren A, Xu X-W. Genomic-based taxonomic classification of the family Erythrobacteraceae . Int J Syst Evol Microbiol 2020; 70: 4470 4495 [CrossRef] [PubMed]
    [Google Scholar]
  2. Li J, Zhou H, Peng X, Wu Z, Chen S et al. Microbial diversity and biomineralization in low-temperature hydrothermal iron-silica-rich precipitates of the Lau Basin hydrothermal field. FEMS Microbiol Ecol 2012; 81: 205 216 [CrossRef] [PubMed]
    [Google Scholar]
  3. Reno NV. Ridge 2000 Workshop Report: Lau Integrated Studies Site Focus Workshop; 2006
    [Google Scholar]
  4. Hsu-Kim H, Mullaugh KM, Tsang JJ, Yucel M, Luther GW. Formation of Zn- and Fe-sulfides near hydrothermal vents at the Eastern Lau spreading center: implications for sulfide bioavailability to chemoautotrophs. Geochem Trans 2008; 9: 1 14 [CrossRef]
    [Google Scholar]
  5. Wu Y-H, Xu L, Meng F-X, Zhang D-S, Wang C-S et al. Altererythrobacter atlanticus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014; 64: 116 121 [CrossRef] [PubMed]
    [Google Scholar]
  6. Cheng H, Zhang S, Huo YY, Jiang XW, Zhang XQ et al. Gilvimarinus polysaccharolyticus sp. nov., an agar-digesting bacterium isolated from seaweed, and emended description of the genus Gilvimarinus . Int J Syst Evol Microbiol 2015; 65: 562 569 [CrossRef] [PubMed]
    [Google Scholar]
  7. Kumar S, Stecher G, Tamura K. mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870 1874 [CrossRef] [PubMed]
    [Google Scholar]
  8. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406 425 [CrossRef] [PubMed]
    [Google Scholar]
  9. Rzhetsky A, Nei M. A simple method for estimating and testing minimum method of phylogenetic inference. Mol Biol Evol 1992; 9: 945 967
    [Google Scholar]
  10. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368 376 [CrossRef] [PubMed]
    [Google Scholar]
  11. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111 120 [CrossRef] [PubMed]
    [Google Scholar]
  12. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009; 19: 1117 1123 [CrossRef] [PubMed]
    [Google Scholar]
  13. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25: 1043 1055 [CrossRef] [PubMed]
    [Google Scholar]
  14. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35: 3100 3108 [CrossRef] [PubMed]
    [Google Scholar]
  15. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106: 19126 19131 [CrossRef] [PubMed]
    [Google Scholar]
  16. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463 464 [CrossRef]
    [Google Scholar]
  17. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187: 6258 6264 [CrossRef] [PubMed]
    [Google Scholar]
  18. Xu L, Wu Y-H, Zhou P, Cheng H, Liu Q et al. Investigation of the thermophilic mechanism in the genus Porphyrobacter by comparative genomic analysis. BMC Genomics 2018; 19: 385 [CrossRef] [PubMed]
    [Google Scholar]
  19. Xu L, Ye K-X, Dai W-H, Sun C, Xu L-H et al. Comparative genomic insights into secondary metabolism biosynthetic gene cluster distributions of marine Streptomyces . Mar Drugs 2019; 17: 498 [CrossRef] [PubMed]
    [Google Scholar]
  20. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF et al. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 2011; 12: 124 [CrossRef] [PubMed]
    [Google Scholar]
  21. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30: 772 780 [CrossRef] [PubMed]
    [Google Scholar]
  22. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25: 1972 1973 [CrossRef] [PubMed]
    [Google Scholar]
  23. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32: 268 274 [CrossRef] [PubMed]
    [Google Scholar]
  24. Fang C, Wu Y-H, Sun C, Wang H, Cheng H et al. Erythrobacter zhengii sp. nov., a bacterium isolated from deep-sea sediment. Int J Syst Evol Microbiol 2019; 69: 241 248 [CrossRef] [PubMed]
    [Google Scholar]
  25. Cai MY, Dong XZ. Determinative Manual for Routine Bacteriology BeiJing: Scientific Press; 2001
    [Google Scholar]
  26. Farmer III JJ, Janda JM, Brenner FW, Cameron DN, Birkhead KM. Genus I. Vibrio Pacini 1854, 411AL . In Garrity GM, Brenner DJ, Krieg NR, Staley JT. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed, vol. 2, The Proteobacteria, Part B, The Gammaproteobacteria New York: Springer; 2005 pp 494 546
    [Google Scholar]
  27. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85: 1183 1184 [CrossRef] [PubMed]
    [Google Scholar]
  28. Wu Y-H, Xu L, Zhou P, Wang CS, Oren A. Brevirhabdus pacifica gen. nov., sp. nov., isolated from deep-sea sediment in a hydrothermal vent field. Int J Syst Evol Microbiol 2015; 64: 3645 3651
    [Google Scholar]
  29. Chen C, Su Y, Tao T, Fu G, Zhang C et al. Maripseudobacter aurantiacus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a sedimentation basin. Int J Syst Evol Microbiol 2017; 67: 778 783 [CrossRef] [PubMed]
    [Google Scholar]
  30. Fang C, Wu Y-H, Xamxidin M, Wang C-S, Xu X-W. Maribacter cobaltidurans sp. nov., a heavy-metal-tolerant bacterium isolated from deep-sea sediment. Int J Syst Evol Microbiol 2017; 67: 5261 5267 [CrossRef] [PubMed]
    [Google Scholar]
  31. Ma H, Ren H, Huang L, Luo Y. Altererythrobacter flavus sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2018; 68: 2265 2270 [CrossRef] [PubMed]
    [Google Scholar]
  32. Liao H, Li Y, Zhang M, Lin X, Lai Q et al. Altererythrobacter mangrovi sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2017; 67: 4851 4856 [CrossRef] [PubMed]
    [Google Scholar]
  33. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42: D206 D214 [CrossRef] [PubMed]
    [Google Scholar]
  34. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res 2004; 32: 277D 280 [CrossRef] [PubMed]
    [Google Scholar]
  35. Li H-P, Yao D, Shao K-Z, Han Q-Q, Gou J-Y et al. Altererythrobacter rhizovicinus sp. nov., isolated from rhizosphere soil of Haloxylon ammodendron . Int J Syst Evol Microbiol 2020; 70: 680 686 [CrossRef] [PubMed]
    [Google Scholar]
  36. Zhuang L, Lin B, Chen D, Li G, Zhang B et al. Altererythrobacter spongiae sp. nov., a novel member of the genus Altererythrobacter isolated from marine sponge. Int J Syst Evol Microbiol 2019; 69: 2043 2048 [CrossRef] [PubMed]
    [Google Scholar]
  37. Matsumoto M, Iwama D, Arakaki A, Tanaka A, Tanaka T et al. Altererythrobacter ishigakiensis sp. nov., an astaxanthin-producing bacterium isolated from a marine sediment. Int J Syst Evol Microbiol 2011; 61: 2956 2961 [CrossRef] [PubMed]
    [Google Scholar]
  38. Kwon KK, Woo JH, Yang SH, Kang JH, Kang SG et al. Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. Int J Syst Evol Microbiol 2007; 57: 2207 2211 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004678
Loading
/content/journal/ijsem/10.1099/ijsem.0.004678
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error