1887

Abstract

A pink-pigmented, Gram-stain-negative, rod-shaped, strictly aerobic bacterial strain MIMtkB3, was isolated from moss crusts in Hunshandake desert of China. Cells grew at 15–45 °C (optimum of 28 °C), at pH of 6.0–8.5 (optimum of 7.0) and with 0–1.0 % (w/v) NaCl (optimum of 0 %). The strain could biosynthesize the green-coloured pigment bacteriochlorophyll (BChl ). The respiratory quinone was ubiquinone Q-10, while C ω7c and C 2OH were the major fatty acids. Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminophospholipid, one unidentified phospholipid, three unidentified glycolipid and one unidentified lipid were the major polar lipids. Strain MIMtkB3 was most closely related to NAU-10, CC-LY736, and SW of the family with 16S rRNA gene similarities of 93.09, 92.02 and 91.73%, respectively. The genomic DNA G+C content calculated on complete genome sequencing was 69.3 mol%. The average nucleotide identity between strain MIMtkB3 and its closely related type strains in was below 77.96 % and digital DNA–DNA hybridization lower than 24.70 %. Full light utilization pathway of aerobic anoxygenic phototrophic bacteria was identified in the genome. Based on phenotypic, chemotaxonomic and phylogenetic characteristics, strain MIMtkB3 represents a novel genus of the family , for which the name gen. nov., sp. nov. is proposed. The type strain is MIMtkB3 (=KCTC 42633=MCCC 1K00570).

Funding
This study was supported by the:
  • Fu-YingFeng , Science and Technology Innovation-oriented Project of Inner Mongolia Autonomous Region , (Award 2017)
  • Fu-YingFeng , National Natural Science Foundation of China , (Award 31560030)
  • Fu-YingFeng , Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region (CN) , (Award 2019GG001)
  • KaiTang , Doctoral Foundation of Inner Mongolia Natural Science Foundation , (Award 2020BS03047)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004677
2021-02-02
2021-03-02
Loading full text...

Full text loading...

References

  1. Stackebrandt E, Murray RGE, Trüper HG. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”. Int J Syst Bacteriol 1988; 38: 321 325 [CrossRef]
    [Google Scholar]
  2. Baldani JI, Videira SS, dos Santos Teixeira KR, Reis VM, De Oliveira AL. The family Rhodospirillaceae . In Rosenberg E, DeLong EF, Lory S. (editors) The Prokaryotes: Alphaproteobacteria and Betaproteobacteria Berlin: Springer-Verlag; 2014 pp 533 618
    [Google Scholar]
  3. Imhoff JF. Rhodospirillum. Bergey’s Manual of Systematics of Archaea and Bacteria 2015 pp 1 10
    [Google Scholar]
  4. Favinger J, Stadtwald R, Gest H. Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. Antonie Van Leeuwenhoek 1989; 55: 291 296 [CrossRef] [PubMed]
    [Google Scholar]
  5. Weon H-Y, Kim B-Y, Hong S-B, Joa J-H, Nam S-S et al. Skermanella aerolata sp. nov., isolated from air, and emended description of the genus Skermanella . Int J Syst Evol Microbiol 2007; 57: 1539 1542 [CrossRef] [PubMed]
    [Google Scholar]
  6. Yurkov V, Hughes E. Aerobic anoxygenic phototrophs: four decades of mystery. In Hallenbeck PC. editor Modern Topics in the Phototrophic Prokaryotes: Environmental and Applied Aspects Switzerland: Cham: Springer Switzerland Cham; 2017 pp 193 214
    [Google Scholar]
  7. Ferrera I, Sánchez O, Kolářová E, Koblížek M, Gasol JM. Light enhances the growth rates of natural populations of aerobic anoxygenic phototrophic bacteria. Isme J 2017; 11: 2391 2393 [CrossRef] [PubMed]
    [Google Scholar]
  8. Koblížek M. Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev 2015; 39: 854 870 [CrossRef] [PubMed]
    [Google Scholar]
  9. Csotonyi JT, Swiderski J, Stackebrandt E, Yurkov V. A new environment for aerobic anoxygenic phototrophic bacteria: biological soil crusts. Environ Microbiol Rep 2010; 2: 651 656 [CrossRef] [PubMed]
    [Google Scholar]
  10. Tang K, Jia L, Yuan B, Yang S, Li H et al. Aerobic anoxygenic phototrophic bacteria promote the development of biological soil crusts. Front Microbiol 2018; 9: 2715 [CrossRef] [PubMed]
    [Google Scholar]
  11. Zeng Y, Feng F, Medová H, Dean J, Koblížek M. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes . Proc Natl Acad Sci U S A 2014; 111: 7795 7800 [CrossRef] [PubMed]
    [Google Scholar]
  12. Giovannoni SJ, DeLong EF, Olsen GJ, Pace NR. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 1988; 170: 720 726 [CrossRef]
    [Google Scholar]
  13. Lane DJ. 16S/23S rRNA sequencing.. In Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York, NY: John Wiley & Sons; 1991 pp 115 175
    [Google Scholar]
  14. Chun J, Lee J-H, Jung Y, Kim M, Kim S et al. Eztaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 2007; 57: 2259 2261 [CrossRef] [PubMed]
    [Google Scholar]
  15. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32: 1792 1797 [CrossRef] [PubMed]
    [Google Scholar]
  16. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35: 1547 1549 [CrossRef] [PubMed]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111 120 [CrossRef] [PubMed]
    [Google Scholar]
  18. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12: 635 645 [CrossRef] [PubMed]
    [Google Scholar]
  19. Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E et al. IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 2014; 42: D560 D567 [CrossRef] [PubMed]
    [Google Scholar]
  20. Ha SM, Kim CK, Roh J, Byun JH, Yang SJ et al. Application of the whole genome-based bacterial identification system, TrueBac ID, using clinical isolates that were not identified with three matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems. Ann Lab Med 2019; 39: 530 536 [CrossRef] [PubMed]
    [Google Scholar]
  21. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68: 461 466 [CrossRef] [PubMed]
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110: 1281 1286 [CrossRef] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 73 [CrossRef] [PubMed]
    [Google Scholar]
  24. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106: 19126 19131 [CrossRef] [PubMed]
    [Google Scholar]
  25. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2: 117 134 [CrossRef] [PubMed]
    [Google Scholar]
  26. Zuo G, Hao B. CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genomics Proteomics Bioinformatics 2015; 13: 321 331 [CrossRef] [PubMed]
    [Google Scholar]
  27. Ruan Z, Sun Q, Zhang Y, Jiang J-D. Oleisolibacter albus gen. nov., sp. nov., isolated from an oil-contaminated soil. Int J Syst Evol Microbiol 2019; 69: 2220 2225 [CrossRef] [PubMed]
    [Google Scholar]
  28. Lin S-Y, Hameed A, Shen F-T, Liu Y-C, Hsu Y-H et al. Description of Niveispirillum fermenti gen. nov., sp. nov., isolated from a fermentor in Taiwan, transfer of Azospirillum irakense (1989) as Niveispirillum irakense comb. nov., and reclassification of Azospirillum amazonense (1983) as Nitrospirillum amazonense gen. nov. Antonie van Leeuwenhoek 2014; 105: 1149 1162 [CrossRef] [PubMed]
    [Google Scholar]
  29. Kawasaki H, Hoshino Y, Kuraishi H, Yamasato K. Rhodocista centenaria gen. nov., sp. nov., a cyst-forming anoxygenic photosynthetic bacterium and its phylogenetic position in the Proteobacteria alpha group. J Gen Appl Microbiol 1992; 38: 541 551 [CrossRef]
    [Google Scholar]
  30. Claus D. A standardized gram staining procedure. World J Microbiol Biotechnol 1992; 8: 451 452 [CrossRef] [PubMed]
    [Google Scholar]
  31. Yurkov V, Csotnyi JT. New light on aerobic anoxygenic phototrophs. In Daldal F, Thurnauer MC, Beatty JT. (editors) The Purple Phototrophic Bacteria Dordrecht: Springer Science; 2009 pp 31 55
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids , MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  33. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. Methods for General and Molecular Microbiology , 3rd ed. 1990 pp 330 393
    [Google Scholar]
  34. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66: 199 202 [CrossRef]
    [Google Scholar]
  35. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13: 128 130 [CrossRef]
    [Google Scholar]
  36. Liu Q, Xamxidin M, Sun C, Cheng H, Meng F-X et al. Marinobacter fuscus sp. nov., a marine bacterium of Gammaproteobacteria isolated from surface seawater. Int J Syst Evol Microbiol 2018; 68: 3156 3162 [CrossRef] [PubMed]
    [Google Scholar]
  37. Chen R-W, Wang K-X, Zhou X-F, Long C, Tian X-P et al. Indioceanicola profundi gen. nov., sp. nov., isolated from Indian Ocean sediment. Int J Syst Evol Microbiol 2018; 68: 3707 3712 [CrossRef] [PubMed]
    [Google Scholar]
  38. Luo G, Shi Z, Wang H, Wang G. Skermanella stibiiresistens sp. nov., a highly antimony-resistant bacterium isolated from coal-mining soil, and emended description of the genus Skermanella . Int J Syst Evol Microbiol 2012; 62: 1271 1276 [CrossRef] [PubMed]
    [Google Scholar]
  39. Lin S-Y, Liu Y-C, Hameed A, Hsu Y-H, Huang H-I et al. Azospirillum agricola sp. nov., a nitrogen-fixing species isolated from cultivated soil. Int J Syst Evol Microbiol 2016; 66: 1453 1458 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004677
Loading
/content/journal/ijsem/10.1099/ijsem.0.004677
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error