1887

Abstract

Strain L22-9, a Gram-stain-negative and rod-shaped bacterium, motile by one polar flagellum, was isolated from cornfield soil in Bijie, Guizhou Province, PR China. Based on 16S rRNA gene sequences, it was identified as a species. Multilocus sequence analysis of concatenated 16S rRNA, , and gene sequences showed that strain L22-9 formed a clearly separated branch, located in a cluster together with LMG 21623, DSM 13647 and DSM 13194. Whole-genome comparisons based on average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) confirmed that strain L22-9 should be classified as a novel species. It was most closely related to DSM 13647 with ANI and dDDH values of 91.87 and 46.3 %, respectively. Phenotypic features that can distinguish strain L22-9 from DSM 13647 are the assimilation ability of -acetyl--glucosamine, poor activity of arginine dihydrolase and failure to ferment ribose and -fucose. The predominant cellular fatty acids of strain L22-9 are C, summed feature 3 (C ω6 and/or C ω7) and summed feature 8 (C ω7 and/or C ω6). The respiratory quinones consist of Q-9 and Q-8. The polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, two unidentified phosphoglycolipids, two unidentified aminophospholipids and an unidentified glycolipid. Based on the evidence, we conclude that strain L22-9 represents a novel species, for which the name sp. nov. is proposed. The type strain is L22-9 (=CGMCC 1.18528=LMG 31948), with a DNA G+C content of 60.85 mol%.

Funding
This study was supported by the:
  • National Key R&D Program of China (Award 2018YFD0201202)
    • Principle Award Recipient: BoZhu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004676
2021-02-02
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/3/ijsem004676.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004676&mimeType=html&fmt=ahah

References

  1. Migula W. Über ein neues system Der Bakterien. Arb Bakteriol Inst Karlsruhe 1894; 1:235–238
    [Google Scholar]
  2. Palleroni NJ. Genus I Pseudomonas Migula 1894. In Krieg NR, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology 1 Baltimore, MD: Williams & Wilkins; 1984 pp 141–171
    [Google Scholar]
  3. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article][PubMed]
    [Google Scholar]
  4. Palleroni N. Introduction to the Pseudomonadaceae . In Truper HG, Dworkin M, Harder W, Schleifer KH. (editors) The Prokaryotes, A Handbook on the Biology of Bacteria, Ecophysiology, Isolation, Identification and Applications 3, 2nd ed. New York: Springer; 1992 pp 3071–3085
    [Google Scholar]
  5. Mercado-Blanco J. Pseudomonas strains that exert biocontrol of plant pathogens. In Ramos J-L, Goldberg JB, Filloux A. (editors) Pseudomonas: Volume 7: New Aspects of Pseudomonas Biology Dordrecht: Springer Netherlands; 2015 pp 121–172
    [Google Scholar]
  6. Weller DM. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 1988; 26:379–407 [View Article]
    [Google Scholar]
  7. Liang J, Wang S, Yiming A, Fu L, Nie W et al. Genome Resource for Pseudomonas sp. strain L22-9: A Potential Novel Species with Antifungal Activity. Phytopathology 2020PHYTO-06-20-024 [View Article][PubMed]
    [Google Scholar]
  8. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article][PubMed]
    [Google Scholar]
  9. Peix A, Ramírez-Bahena M-H, Velázquez E. The current status on the taxonomy of Pseudomonas revisited: An update. Infect Genet Evol 2018; 57:106–116 [View Article][PubMed]
    [Google Scholar]
  10. Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A et al. Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 2000; 146:2385–2394 [View Article][PubMed]
    [Google Scholar]
  11. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010; 12:1513–1530 [View Article][PubMed]
    [Google Scholar]
  12. Tarnawski S, Hamelin J, Locatelli L, Aragno M, Fromin N. Examination of Gould's modified S1 (mS1) selective medium and angle's non-selective medium for describing the diversity of Pseudomonas spp. in soil and root environments. FEMS Microbiol Ecol 2003; 45:97–104 [View Article][PubMed]
    [Google Scholar]
  13. Raymaekers K, Ponet L, Holtappels D, Berckmans B, Cammue BPA. Screening for novel biocontrol agents applicable in plant disease management – a review. Biological Control 2020; 144:104240 [View Article]
    [Google Scholar]
  14. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  15. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2019; 20:1160–1166 [View Article][PubMed]
    [Google Scholar]
  16. Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 2016; 44:W232–W235 [View Article][PubMed]
    [Google Scholar]
  17. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  18. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article][PubMed]
    [Google Scholar]
  19. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article][PubMed]
    [Google Scholar]
  20. Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol 2019; 1962:227–245 [View Article][PubMed]
    [Google Scholar]
  21. Palleroni NJ. Pseudomonas. In Brenner DJ, Krieg NR, Staley JT. (editors) Bergey’s Manual of Systematic Bacteriology 2., 2nd ed. New York: Springer; 2005 pp 323–379
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  24. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  25. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954; 44:301–307[PubMed]
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI technical note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  27. Burr SE, Gobeli S, Kuhnert P, Goldschmidt-Clermont E, Frey J. Pseudomonas chlororaphis subsp. piscium subsp. nov., isolated from freshwater fish. Int J Syst Evol Microbiol 2010; 60:2753–2757 [View Article][PubMed]
    [Google Scholar]
  28. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article][PubMed]
    [Google Scholar]
  29. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986; 123:251–256 [View Article][PubMed]
    [Google Scholar]
  30. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  31. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  32. Moore ERB, Tindall BJ, Martins Dos Santos VAP, Pieper DH, Ramos JL. Nonmedical: Pseudomonas, 3 ed. New York: Springer; 2006 pp 646–703
    [Google Scholar]
  33. Lick S, Kröckel L, Wibberg D, Winkler A, Blom J et al. Pseudomonas carnis sp. nov., isolated from meat. Int J Syst Evol Microbiol 2020; 70:1528–1540 [View Article][PubMed]
    [Google Scholar]
  34. Hofmann K, Huptas C, Doll EV, Scherer S, Wenning M. Pseudomonas haemolytica sp. nov., isolated from raw milk and skimmed milk concentrate. Int J Syst Evol Microbiol 2020; 70:2339–2347 [View Article][PubMed]
    [Google Scholar]
  35. Achouak W, Sutra L, Heulin T, Meyer JM, Fromin N et al. Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana . Int J Syst Evol Microbiol 2000; 50 Pt 1:9–18 [View Article][PubMed]
    [Google Scholar]
  36. Ivanova EP, Christen R, Bizet C, Clermont D, Motreff L et al. Pseudomonas brassicacearum subsp. neoaurantiaca subsp. nov., orange-pigmented bacteria isolated from soil and the rhizosphere of agricultural plants. Int J Syst Evol Microbiol 2009; 59:2476–2481 [View Article][PubMed]
    [Google Scholar]
  37. Sikorski J, Stackebrandt E, Wackernagel W. Pseudomonas kilonensis sp. nov., a bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 2001; 51:1549–1555 [View Article][PubMed]
    [Google Scholar]
  38. Catara V, Sutra L, Morineau A, Achouak W, Christen R et al. Phenotypic and genomic evidence for the revision of Pseudomonas corrugata and proposal of Pseudomonas mediterranea sp. nov. Int J Syst Evol Microbiol 2002; 52:1749–1758 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004676
Loading
/content/journal/ijsem/10.1099/ijsem.0.004676
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error