1887

Abstract

A newly isolated bacterial strain designated as HKS19 was isolated from a ginseng cultivation soil sample collected in South Korea. Cells of the strain HKS19 were Gram-stain-negative, rod, oval-shaped and they formed yellow colonies when grown on R2A agar at 30 °C. HKS19 showed the highest 16S rRNA gene sequence similarity (98.6%) with NBRC 15499. Its growth was observed at 10–37 °C (optimum 30 °C), pH 6–9 (optimum pH 7), and in the presence of 0–1% NaCl (optimum 0%). The genome size of HKS19 was 3.4 Mb and the G+C content was 65.1 mol%. The main polar lipid of strain HKS19 was diphosphatidylglycerol (DPG), the predominant respiratory quinone was Q-10 and the major fatty acids were a summed feature 8 (C c / C c) and C. Based on the phylogenetic, genotypic, phenotypic and chemotaxonomic analysis, strain HKS19 represents a newly isolated species of the genus , for which the name is proposed. The type strain is HKS19 (=KACC 18881=LMG 29564 ).

Funding
This study was supported by the:
  • JaewooBai , Seoul Women`s University
  • Wan-TaekIm , National Institute of Biological Resources
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004675
2021-02-09
2021-03-02
Loading full text...

Full text loading...

References

  1. Holmes B, Owen RJ, Evans A, Malnick H, Willcox WR. Pseudomonas paucimobilis, a new species isolated from human clinical specimens, the hospital environment, and other sources. Int J Syst Bacteriol 1977; 27: 133 146 [CrossRef]
    [Google Scholar]
  2. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 1990; 34: 99 119 [CrossRef] [PubMed]
    [Google Scholar]
  3. Yabuuchi E, Kosako Y. Sphingomonas . In Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P et al. (editors) Bergey’s Manual of Systematics of Archaea and Bacteria 2015
    [Google Scholar]
  4. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697 703 [CrossRef] [PubMed]
    [Google Scholar]
  5. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613 1617 [CrossRef] [PubMed]
    [Google Scholar]
  6. Jeon Y-S, Lee K, Park S-C, Kim B-S, Cho Y-J et al. EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes. Int J Syst Evol Microbiol 2014; 64: 689 691 [CrossRef] [PubMed]
    [Google Scholar]
  7. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406 425 [CrossRef] [PubMed]
    [Google Scholar]
  8. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368 376 [CrossRef] [PubMed]
    [Google Scholar]
  9. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406 416 [CrossRef]
    [Google Scholar]
  10. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870 1874 [CrossRef] [PubMed]
    [Google Scholar]
  11. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111 120 [CrossRef] [PubMed]
    [Google Scholar]
  12. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783 791 [CrossRef] [PubMed]
    [Google Scholar]
  13. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846 849 [CrossRef]
    [Google Scholar]
  14. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64: 346 351 [CrossRef] [PubMed]
    [Google Scholar]
  15. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10: 563 569 [CrossRef] [PubMed]
    [Google Scholar]
  16. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67: 2053 2057 [CrossRef] [PubMed]
    [Google Scholar]
  17. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44: 6614 6624 [CrossRef] [PubMed]
    [Google Scholar]
  18. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66: 1100 1103 [CrossRef] [PubMed]
    [Google Scholar]
  19. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  20. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102: 2567 2572 [CrossRef] [PubMed]
    [Google Scholar]
  21. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233 241 [CrossRef]
    [Google Scholar]
  22. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42: 457 469 [CrossRef]
    [Google Scholar]
  23. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161 205
    [Google Scholar]
  24. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51: 1405 1417 [CrossRef] [PubMed]
    [Google Scholar]
  25. Takeuchi M, Sakane T, Yanagi M, Yamasato K, Hamana K et al. Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int J Syst Bacteriol 1995; 45: 334 341 [CrossRef] [PubMed]
    [Google Scholar]
  26. Yang D-C, Im W-T, Kim MK, Ohta H, Lee S-T. Sphingomonas soli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in the α-4 subgroup of the Proteobacteria. Int J Syst Evol Microbiol 2006; 56: 703 707 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004675
Loading
/content/journal/ijsem/10.1099/ijsem.0.004675
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error