1887

Abstract

A bacterial strain, designated WCA-9-b2, was isolated from the caecal content of an 18-week-old obese C57BL/6NTac male mouse. According to phenotypic analyses, the isolate was rod-shaped, strictly anaerobic, spore-forming, non-motile and Gram-stain-positive, under the conditions tested. Colonies were irregular and non-pigmented. Analysis of the 16S rRNA gene sequence indicated that the isolate belonged to the order with ATCC 27755 (94.9 % sequence identity), ATCC 29149 (94.8%) and ATCC 35704 (94.3%) being the closest relatives. Whole genome sequencing showed an average nucleotide identity <74.23 %, average amino acid identity <64.52–74.67 % and percentage of conserved proteins values <50 % against the nine closest relatives (, , , , , , , and ). The genome-based G+C content of genomic DNA was 44.4 mol%. The major cellular fatty acids were C (24.5%), C 9 (19.8 %), C DMA (11.7%), C (8.4%) and C (6.6%). Respiratory quinones were not detected. The predominant metabolic end products of glucose fermentation were acetate and succinate. Production of CO and H were detected. Based on these data, we propose that strain WCA-9-b2 represents a novel species within a novel genus, for which the name gen. nov., sp. nov. is proposed. The type strain is WCA-9-b2 (=DSM 106039=CECT 30156).

Funding
This study was supported by the:
  • DennisSandris Nielsen , Det Frie Forskningsråd , (Award DFF-6111-00316)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004673
2021-01-29
2021-02-26
Loading full text...

Full text loading...

References

  1. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR et al. Evolution of mammals and their gut microbes. Science 2008; 320: 1647 1651 [CrossRef] [PubMed]
    [Google Scholar]
  2. Bilen M, Dufour J-C, Lagier J-C, Cadoret F, Daoud Z et al. The contribution of culturomics to the repertoire of isolated human bacterial and archaeal species. Microbiome 2018; 6: 94 [CrossRef] [PubMed]
    [Google Scholar]
  3. Schloss PD, Handelsman J. Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol 2005; 6: 229 [CrossRef] [PubMed]
    [Google Scholar]
  4. Tetz G, Tetz V. Introducing the sporobiota and sporobiome. Gut Pathog 2017; 9: 1 6 [CrossRef]
    [Google Scholar]
  5. Makki K, Deehan EC, Walter J, Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018; 23: 705 715 [CrossRef] [PubMed]
    [Google Scholar]
  6. Xu X, Xu P, Ma C, Tang J, Zhang X. Gut microbiota, host health, and polysaccharides. Biotechnol Adv 2013; 31: 318 337 [CrossRef] [PubMed]
    [Google Scholar]
  7. Marchesi JR, Adams DH, Fava F, Hermes GDA, Hirschfield GM et al. The gut microbiota and host health: a new clinical frontier. Gut 2016; 65: 330 339 [CrossRef] [PubMed]
    [Google Scholar]
  8. Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R et al. Short chain fatty acids (SCFAs)-Mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 2019; 10: 277 [CrossRef] [PubMed]
    [Google Scholar]
  9. Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A. Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog 2013; 5: 1 [CrossRef]
    [Google Scholar]
  10. Baxter NT, Schmidt AW, Venkataraman A, Kim KS, Waldron C et al. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. MBio 2019; 10: 1 13 [CrossRef]
    [Google Scholar]
  11. Connors J, Dawe N, Van Limbergen J. The role of succinate in the regulation of intestinal inflammation. Nutrients 2018; 11: 25 [CrossRef]
    [Google Scholar]
  12. Rasmussen TS, de Vries L, Kot W, Hansen LH, Castro-Mejía JL et al. Mouse vendor influence on the bacterial and viral gut composition exceeds the effect of diet. Viruses 2019; 11: 435 [CrossRef]
    [Google Scholar]
  13. Zehnder AJ, Wuhrmann K, Titanium WK. Titanium (III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 1976; 194: 1165 1166 [CrossRef] [PubMed]
    [Google Scholar]
  14. Jones GA, Pickard MD. Effect of titanium (III) citrate as reducing agent on growth of rumen bacteria. Appl Environ Microbiol 1980; 39: 1144 1147 [CrossRef] [PubMed]
    [Google Scholar]
  15. Kageyama A, Benno Y, Nakase T. Phylogenetic evidence for the transfer of Eubacterium lentum to the genus Eggerthella as Eggerthella lenta gen. nov., comb. nov. Int J Syst Bacteriol 1999; 49 Pt 4: 1725 1732 [CrossRef] [PubMed]
    [Google Scholar]
  16. Peters S, Koschinsky S, Schwieger F, Tebbe CC. Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Appl Environ Microbiol 2000; 66: 930 936 [CrossRef] [PubMed]
    [Google Scholar]
  17. Schwieger F, Tebbe CC. A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 1998; 64: 4870 4876 [CrossRef] [PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613 1617 [CrossRef] [PubMed]
    [Google Scholar]
  19. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947 2948 [CrossRef] [PubMed]
    [Google Scholar]
  20. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35: 1547 1549 [CrossRef] [PubMed]
    [Google Scholar]
  21. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10: 512 526 [CrossRef] [PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406 425 [CrossRef] [PubMed]
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783 791 [CrossRef] [PubMed]
    [Google Scholar]
  24. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 2004; 101: 11030 11035 [CrossRef] [PubMed]
    [Google Scholar]
  25. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9: 945 967
    [Google Scholar]
  26. Rawls JF, Mahowald MA, Ley RE, Gordon JI. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 2006; 127: 423 433 [CrossRef] [PubMed]
    [Google Scholar]
  27. Smith P, Siddharth J, Pearson R, Holway N, Shaxted M et al. Host genetics and environmental factors regulate ecological succession of the mouse colon tissue-associated microbiota. PLoS One 2012; 7: e30273 [CrossRef] [PubMed]
    [Google Scholar]
  28. Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol 2007; 5: 2177 2189 [CrossRef]
    [Google Scholar]
  29. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444: 1027 1031 [CrossRef] [PubMed]
    [Google Scholar]
  30. Togo AH, Diop A, Bittar F, Maraninchi M, Valero R et al. Description of Mediterraneibacter massiliensis, gen. nov., sp. nov., a new genus isolated from the gut microbiota of an obese patient and reclassification of Ruminococcus faecis, Ruminococcus lactaris, Ruminococcus torques, Ruminococcus gnavus and Clostridium glycyrrhizinilyticum as Mediterraneibacter faecis comb. nov., Mediterraneibacter lactaris comb. nov., Mediterraneibacter torques comb. nov., Mediterraneibacter gnavus comb. nov. and Mediterraneibacter glycyrrhizinilyticus comb. nov. Antonie Van Leeuwenhoek 2018; 111: 2107 2128 [CrossRef] [PubMed]
    [Google Scholar]
  31. Krych Łukasz, Kot W, Bendtsen KMB, Hansen AK, Vogensen FK et al. Have you tried spermine? a rapid and cost-effective method to eliminate dextran sodium sulfate inhibition of PCR and RT-PCR. J Microbiol Methods 2018; 144: 1 7 [CrossRef] [PubMed]
    [Google Scholar]
  32. Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for Oxford nanopore sequencing. Genome Biol 2019; 20: 1 10 [CrossRef]
    [Google Scholar]
  33. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27: 722 736 [CrossRef] [PubMed]
    [Google Scholar]
  34. Vaser R, Sović I, Nagarajan N, Šikić M, ikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017; 27: 737 746 [CrossRef] [PubMed]
    [Google Scholar]
  35. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9: e112963 [CrossRef] [PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Klenk H-P, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64: 352 356 [CrossRef] [PubMed]
    [Google Scholar]
  37. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30: 2068 2069 [CrossRef] [PubMed]
    [Google Scholar]
  38. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using diamond. Nat Methods 2015; 12: 59 60 [CrossRef] [PubMed]
    [Google Scholar]
  39. Geer LY, Marchler-Bauer A, Geer RC, Han L, He J et al. The NCBI biosystems database. Nucleic Acids Res 2010; 38: D492 D496 [CrossRef] [PubMed]
    [Google Scholar]
  40. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196: 2210 2215 [CrossRef] [PubMed]
    [Google Scholar]
  41. Pannekoek Y, Qi-Long Q, Zhang Y-Z, van der Ende A. Genus delineation of Chlamydiales by analysis of the percentage of conserved proteins justifies the reunifying of the genera Chlamydia and Chlamydophila into one single genus Chlamydia . Pathog Dis 2016; 74: 1 4 [CrossRef] [PubMed]
    [Google Scholar]
  42. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389 3402 [CrossRef] [PubMed]
    [Google Scholar]
  43. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66: 1100 1103 [CrossRef] [PubMed]
    [Google Scholar]
  44. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Mag 2014; 9: 111 118 [CrossRef]
    [Google Scholar]
  45. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64: 346 351 [CrossRef] [PubMed]
    [Google Scholar]
  46. Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Bell ME. Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int J Syst Evol Microbiol 2020; 70: 4432 4450
    [Google Scholar]
  47. Shimoyama Y, Horiike T. Genome identifier: a tool for phylogenetic analysis of microbial genomes. IPSJ Trans Bioinforma 2019; 12: 17 20
    [Google Scholar]
  48. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10: 421 429 [CrossRef]
    [Google Scholar]
  49. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA et al. The Bioperl toolkit: Perl modules for the life sciences. Genome Res 2002; 12: 1611 1618 [CrossRef] [PubMed]
    [Google Scholar]
  50. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011; 39: W29 W37 [CrossRef]
    [Google Scholar]
  51. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11: 119 [CrossRef] [PubMed]
    [Google Scholar]
  52. Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 2012; 28: 1033 1034 [CrossRef] [PubMed]
    [Google Scholar]
  53. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30: 772 780 [CrossRef] [PubMed]
    [Google Scholar]
  54. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25: 1972 1973 [CrossRef] [PubMed]
    [Google Scholar]
  55. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5: e9490 [CrossRef] [PubMed]
    [Google Scholar]
  56. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Bioinformatics 1992; 8: 275 282 [CrossRef]
    [Google Scholar]
  57. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10: 2182 [CrossRef] [PubMed]
    [Google Scholar]
  58. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17: 1 14 [CrossRef]
    [Google Scholar]
  59. Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35: 3100 3108 [CrossRef]
    [Google Scholar]
  60. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  61. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32: 2798 2800 [CrossRef]
    [Google Scholar]
  62. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106: 645 668 [CrossRef]
    [Google Scholar]
  63. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9: 2 [CrossRef] [PubMed]
    [Google Scholar]
  64. Fawcett P, Eichenberger P, Losick R, Youngman P. The transcriptional profile of early to middle sporulation in Bacillus subtilis . Proc Natl Acad Sci U S A 2000; 97: 8063 8068 [CrossRef] [PubMed]
    [Google Scholar]
  65. Asai K, Takamatsu H, Iwano M, Kodama T, Watabe K et al. The Bacillus subtilis yabQ gene is essential for formation of the spore cortex. Microbiology 2001; 147: 919 927 [CrossRef] [PubMed]
    [Google Scholar]
  66. Grela A, Jamrożek I, Hubisz M, Iwanicki A, Hinc K et al. Positions 299 and 302 of the GerAA subunit are important for function of the GerA spore germination receptor in Bacillus subtilis. PLoS One 2018; 13: 1 15 [CrossRef] [PubMed]
    [Google Scholar]
  67. Moeller R, Setlow P, Horneck G, Berger T, Reitz G et al. Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X rays and high-energy charged-particle bombardment. J Bacteriol 2008; 190: 1134 1140 [CrossRef] [PubMed]
    [Google Scholar]
  68. Eichenberger P, Fujita M, Jensen ST, Conlon EM, Rudner DZ et al. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis . PLoS Biol 2004; 2: e328 [CrossRef] [PubMed]
    [Google Scholar]
  69. Whittaker JW. Non-heme manganese catalase--the 'other' catalase. Arch Biochem Biophys 2012; 525: 111 120 [CrossRef] [PubMed]
    [Google Scholar]
  70. Ha SM, Kim CK, Roh J, Byun JH, Yang SJ et al. Application of the whole genome-based bacterial identification system, TrueBac ID, using clinical isolates that were not identified with three matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems. Ann Lab Med 2019; 39: 530 536 [CrossRef] [PubMed]
    [Google Scholar]
  71. Søndergaard D, Pedersen CNS, Greening C. HydDB: a web tool for hydrogenase classification and analysis. Sci Rep 2016; 6: 1 8 [CrossRef]
    [Google Scholar]
  72. Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM et al. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim Biophys Acta Mol Cell Res 2015; 1853: 1350 1369 [CrossRef]
    [Google Scholar]
  73. Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J 2016; 10: 761 777 [CrossRef] [PubMed]
    [Google Scholar]
  74. Wolf PG, Biswas A, Morales SE, Greening C, Gaskins HR. H2 metabolism is widespread and diverse among human colonic microbes. Gut Microbes 2016; 7: 235 245 [CrossRef] [PubMed]
    [Google Scholar]
  75. Poudel S, Tokmina-Lukaszewska M, Colman DR, Refai M, Schut GJ. Unification of [FeFe]-hydrogenases into three structural and functional groups. Biochim Biophys Acta Gen Subj 1860; 2016: 1910 1921
    [Google Scholar]
  76. Biswas A, Staals RHJ, Morales SE, Fineran PC, Brown CM. CRISPRDetect: a flexible algorithm to define CRISPR arrays. BMC Genomics 2016; 17: 1 14 [CrossRef]
    [Google Scholar]
  77. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 2015; 13: 722 736 [CrossRef] [PubMed]
    [Google Scholar]
  78. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 2020; 18: 67 83 [CrossRef] [PubMed]
    [Google Scholar]
  79. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44: W16 W21 [CrossRef] [PubMed]
    [Google Scholar]
  80. Lagkouvardos I, Joseph D, Kapfhammer M, Giritli S, Horn M et al. IMNGS: a comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci Rep 2016; 6: 1 9 [CrossRef]
    [Google Scholar]
  81. Ederer GM, Lund ME, Blazevic DJ, Reller LB, Mirrett S. Motility-indole-lysine-sulfide medium. J Clin Microbiol 1975; 2: 266 267 [PubMed]
    [Google Scholar]
  82. Cornell U. Gram stain protocols. Am Soc Microbiol 2005; 14852:
    [Google Scholar]
  83. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44: 992 993 [CrossRef] [PubMed]
    [Google Scholar]
  84. Prete R, Long SL, Gallardo AL, Gahan CG, Corsetti A et al. Beneficial bile acid metabolism from Lactobacillus plantarum of food origin. Sci Rep 2020; 10: 1165 [CrossRef] [PubMed]
    [Google Scholar]
  85. Floch MH, Gershengoren W, Elliott S, Spiro HM. Bile acid inhibition of the intestinal microflora--a function for simple bile acids?. Gastroenterology 1971; 61: 228 233 [CrossRef] [PubMed]
    [Google Scholar]
  86. Noriega L, Gueimonde M, Sánchez B, Margolles A, de los Reyes-Gavilán CG. Effect of the adaptation to high bile salts concentrations on glycosidic activity, survival at low PH and cross-resistance to bile salts in Bifidobacterium . Int J Food Microbiol 2004; 94: 79 86 [CrossRef] [PubMed]
    [Google Scholar]
  87. Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall H-U et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 2013; 17: 225 235 [CrossRef] [PubMed]
    [Google Scholar]
  88. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16: 584 586 [CrossRef]
    [Google Scholar]
  89. Kuykendall LD, Roy MA, O'NEILL JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38: 358 361 [CrossRef]
    [Google Scholar]
  90. Moss CW, Lambert-Fair MA. Location of double bonds in monounsaturated fatty acids of Campylobacter cryaerophila with dimethyl disulfide derivatives and combined gas chromatography-mass spectrometry. J Clin Microbiol 1989; 27: 1467 1470 [CrossRef] [PubMed]
    [Google Scholar]
  91. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66: 199 202 [CrossRef]
    [Google Scholar]
  92. Schaeffer AB, Fulton MD. A simplified method of staining endospores. Science 1933; 77: 194 [CrossRef] [PubMed]
    [Google Scholar]
  93. Basseri RJ, Basseri B, Pimentel M, Chong K, Youdim A. Intestinal methane production in obese individuals is associated with a higher body mass index. Gastroenterol Hepatol 2012; 8: 22 28
    [Google Scholar]
  94. Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci U S A 2007; 104: 10643 10648 [CrossRef] [PubMed]
    [Google Scholar]
  95. Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 2014; 12: 661 672 [CrossRef] [PubMed]
    [Google Scholar]
  96. Taras D, Simmering R, Collins MD, Lawson PA, Blaut M. Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., comb. nov., and description of Dorea longicatena sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2002; 52: 423 428 [CrossRef] [PubMed]
    [Google Scholar]
  97. Moore WEC, Johnson JL, Holdeman L V. Emendation of Bacteroidaceae and Butyrivibrio and Descriptions of Desulfomonas gen. nov. and Ten New Species in the Genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus . Int J Syst Bacteriol 1976; 26: 238 252 [CrossRef]
    [Google Scholar]
  98. Sakamoto M, Iino T, Ohkuma M. Faecalimonas umbilicata gen. nov., sp. nov., isolated from human faeces, and reclassification of Eubacterium contortum, Eubacterium fissicatena and Clostridium oroticum as Faecalicatena contorta gen. nov., comb. nov., Faecalicatena fissicatena comb. nov. and Faecalicatena orotica comb. nov. Int J Syst Evol Microbiol 2017; 67: 1219 1227 [CrossRef] [PubMed]
    [Google Scholar]
  99. Morris GN, Winter J, Cato EP, RITCHIE AE, BOKKENHEUSER VD. Clostridium scindens sp. nov., a human intestinal bacterium with Desmolytic activity on corticoids. Int J Syst Bacteriol 1985; 35: 478 481 [CrossRef]
    [Google Scholar]
  100. Kitahara M, Takamine F, Imamura T, Benno Y. Assignment of Eubacterium sp. VPI 12708 and related strains with high bile acid 7alpha-dehydroxylating activity to Clostridium scindens and proposal of Clostridium hylemonae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2000; 50 Pt 3: 971 978 [CrossRef] [PubMed]
    [Google Scholar]
  101. Devendran S, Shrestha R, Alves JMP, Wolf PG, Ly L et al. Clostridium scindens ATCC 35704: Integration of Nutritional Requirements, the Complete Genome Sequence, and Global Transcriptional Responses to Bile Acids. Appl Environ Microbiol 2019; 85: 1 22 [CrossRef]
    [Google Scholar]
  102. Seo B, Yoo JE, Lee YM, Ko G. Merdimonas faecis gen. nov., sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2017; 67: 2430 2435 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004673
Loading
/content/journal/ijsem/10.1099/ijsem.0.004673
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error