1887

Abstract

A Gram-stain-positive bacterium, strain RV15, forming an extensively branched substrate mycelium and aerial hyphae that differentiate into spiral chains of spores, was isolated from a marine sponge collected from Rovinj (Croatia). Comparison of 16S rRNA gene sequences showed that strain RV15 is a member of the genus with highest sequence similarity to the type strains of (98.8 %) (98.6 %) and (98.5 %). Sequence similarities to all other types strains were below 98.5 %. The multilocus sequence analysis-based evolutionary distance, the average nucleotide identity value and the genome-to-genome distance of strain RV15 and the type strain of were clearly below the species cut-off values. Strain RV15 exhibited a quinone system composed of the major menaquinones MK-9(H), MK-9(H) and MK-9(H), typical for the genus . The polar lipid profile of strain RV15 consisted of the predominant compounds diphosphatidylglycerol and phosphatidylethanolamine, moderate amounts of phosphatidylinositol, phosphatidylinositol mannoside, an unidentified lipid and an unidentified phospholipid. Major polyamines were spermine and spermidine. The diagnostic diaminoacid of the peptidoglycan was -diaminopimelic acid. The major fatty acids were iso C, anteiso C ω9 and anteiso C. The results of physiological and biochemical tests allowed further phenotypic differentiation of strain RV15 from its most-related species and hence clearly merits species status. We propose the name sp. nov. with the type strain RV15 (=DSM 42110=LMG 27702).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004672
2021-01-29
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/3/ijsem004672.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004672&mimeType=html&fmt=ahah

References

  1. Waksman SA, Henrici AT. The nomenclature and classification of the actinomycetes. J Bacteriol 1943; 46:337–341 [View Article][PubMed]
    [Google Scholar]
  2. Bérdy J. Bioactive microbial metabolites. J Antibiot 2005; 58:1–26 [View Article]
    [Google Scholar]
  3. Abdelmohsen UR, Balasubramanian S, Oelschlaeger TA, Grkovic T, Pham NB et al. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections. Lancet Infect Dis 2017; 17:e30–e41 [View Article][PubMed]
    [Google Scholar]
  4. Abdelmohsen UR, Yang C, Horn H, Hajjar D, Ravasi T et al. Actinomycetes from red sea sponges: sources for chemical and phylogenetic diversity. Mar Drugs 2014; 12:2771–2789 [View Article][PubMed]
    [Google Scholar]
  5. Abd‐Ellatif AES, Abdel‐Razek AS, Hamed A, Soltan MM, Soliman HSM. Bioactive compounds from marine Streptomyces sp.: structure identification and biological activities. Vietnam J Chem 2019; 57:628–635
    [Google Scholar]
  6. Abdelmohsen UR, Pimentel-Elardo SM, Hanora A, Radwan M, Abou-El-Ela SH et al. Isolation, phylogenetic analysis and anti-infective activity screening of marine sponge-associated actinomycetes. Mar Drugs 2010; 8:399–412 [View Article][PubMed]
    [Google Scholar]
  7. Abdelmohsen UR, Zhang G, Philippe A, Schmitz W, Pimentel-Elardo SM et al. Cyclodysidins A–D, cyclic lipopeptides from the marine sponge-derived Streptomyces strain RV15. Tetrahedron Lett 2012; 53:23–29 [View Article]
    [Google Scholar]
  8. Reimer A, Blohm A, Quack T, Grevelding CG, Kozjak-Pavlovic V et al. Inhibitory activities of the marine streptomycete-derived compound SF2446A2 against Chlamydia trachomatis and Schistosoma mansoni . J Antibiot 2015; 68:674–679 [View Article][PubMed]
    [Google Scholar]
  9. Zhu HH, Guo J, Yao Q, Yang SZ, Deng MR et al. Streptomyces caeruleatus sp. nov., with dark blue diffusible pigment. Int J Syst Evol Microbiol 2011; 61:507–511 [View Article][PubMed]
    [Google Scholar]
  10. Yoon SH, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  11. Kim M, HS O, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes [published correction appears in Int J Syst Evol Microbiol. 2014;64(5):1825]. Int J Syst Evol Microbiol 2014; 64:346–351
    [Google Scholar]
  12. Kumar S, Stecher G, Tamura K. mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  13. Pruesse E, Peplies J, Glöckner FO, Yarza P, Richter M. sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  14. Nei M, Kumar S. Molecular Evolution and Phylogenetics Oxford University Press: Oxford; 2000
    [Google Scholar]
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  16. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  17. Rong X, Huang Y. Taxonomic evaluation of the Streptomyces griseus clade using multilocus sequence analysis and DNA-DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. Int J Syst Evol Microbiol 2010; 60:696–703 [View Article][PubMed]
    [Google Scholar]
  18. Thompson JD, Higgins DG, Gibson TJ, Higgins D. clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  19. Blom J, Kreis J, Spänig S, Juhre T, Bertelli C et al. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 2016; 44:W22–W28 [View Article][PubMed]
    [Google Scholar]
  20. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  21. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  22. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea . Int J Syst Evol Microbiol 2014; 64:316–324 [View Article][PubMed]
    [Google Scholar]
  23. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  24. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article][PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  27. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  28. Altenburger P, Kämpfer P, Akimov VN, Lubitz W, Busse H-J. Polyamine distribution in actinomycetes with group B peptidoglycan and species of the genera Brevibacterium, Corynebacterium, and Tsukamurella . Int J Syst Bacteriol 1997; 47:270–277 [View Article]
    [Google Scholar]
  29. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  30. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  31. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [View Article]
    [Google Scholar]
  32. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [View Article][PubMed]
    [Google Scholar]
  33. Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 1977; 5:249–260 [View Article]
    [Google Scholar]
  34. Schumann P. Peptidoglycan structure. Methods in Microbiology-Taxonomy of Prokaryotes 38 2011 pp 101–126
    [Google Scholar]
  35. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  36. Kämpfer P. Family I. Streptomycetaceae Waksman and Henrici 1943, 339AL emend Rainey, Ward-Rainey and Stackebrandt 1997, emend Kim, Lonsdale, Seong and Goodfellow 2003b, emend. Zhi, Li and Stackebrandt 2009, 600. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI. (editors) Bergey’s Manual of Sytematic Bacteriology. The Actinobacteria, Part B 5, 2nd ed. New York: Springer; 2012 pp 1446–1804
    [Google Scholar]
  37. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–251 [View Article][PubMed]
    [Google Scholar]
  38. Lin YB, Wang XY, Fang H, Ma YN, Tang J et al. Streptomyces shaanxiensis sp. nov., a blue pigment-producing streptomycete from sewage irrigation soil. Int J Syst Evol Microbiol 2012; 62:1725–1730 [View Article][PubMed]
    [Google Scholar]
  39. Klykleung N, Phongsopitanun W, Pittayakhajonwut P, Ohkuma M, Kudo T. Streptomyces phyllanthi sp. nov, isolated from the stem of Phyllanthus amarus . Int J Syst Evol Microbiol 2019; 69:2202–2207
    [Google Scholar]
  40. Nguyen TM, Kim J. Streptomyces gilvifuscus sp. nov., an actinomycete that produces antibacterial compounds isolated from soil. Int J Syst Evol Microbiol 2015; 65:3493–3500 [View Article][PubMed]
    [Google Scholar]
  41. Tang X, Zhao J, Li K, Chen Z, Sun Y et al. Streptomyces cyaneochromogenes sp. nov., a blue pigment-producing actinomycete from manganese-contaminated soil. Int J Syst Evol Microbiol 2019; 69:2202–2207 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004672
Loading
/content/journal/ijsem/10.1099/ijsem.0.004672
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error