1887

Abstract

A novel Gram-stain-negative, curved rod-shaped, 0.5–0.7 µm wide and 3.0–10.0 µm long, non-motile bacterium, designated strain AK53, was isolated from a 5 m depth water sample collected from the Bay of Bengal, Visakhapatnam, India. Colonies on marine agar were circular, small, dark orange, shiny, smooth, translucent, flat, with an entire margin. The major fatty acids included iso-C, iso-C 3OH, anteiso-C, iso-C G, iso-C 3OH and summed feature 3 (C 7 and/or C 6 and/or iso-C-2OH). Polar lipids included phosphatidylethanolamine and five unidentified lipids. The DNA G+C content of the strain AK53 was found to be 40.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain AK53 was closely related to KMM 426 and KMM3941 (pair-wise sequence similarity of 99.17 and 98.89 %, respectively), forming a distinct branch within the genus and clustering with . Strain AK53 shared average nucleotide identity (ANIb, based on ) of 78.07 and 77.44 % with JCM 13508 and JCM 13507, respectively. Based on the observed phenotypic, chemotaxonomic characteristics and phylogenetic analysis, strain AK53 is described in this study as representing a novel species in the genus , for which the name sp. nov. is proposed. The type strain of is AK53 (=MTCC 12004= JCM 19206=KCTC 62553).

Funding
This study was supported by the:
  • AnilKumar Pinnaka , Council of Scientific and Industrial Research, India , (Award BSC402)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004664
2021-01-27
2021-03-02
Loading full text...

Full text loading...

References

  1. Ivanova EP, Nedashkovskaya OI, Chun J, Lysenko AM, Frolova GM et al. Arenibacter gen. nov., new genus of the family Flavobacteriaceae and description of a new species, Arenibacter latericius sp. nov. Int J Syst Evol Microbiol 2001; 51: 1987 1995 [CrossRef] [PubMed]
    [Google Scholar]
  2. Nedashkovskaya OI, Kim SB, Han SK, Lysenko AM, Mikhailov VV et al. Arenibacter certesii sp. nov., a novel marine bacterium isolated from the green alga Ulva fenestrata . Int J Syst Evol Microbiol 2004; 54: 1173 1176 [CrossRef] [PubMed]
    [Google Scholar]
  3. Nedashkovskaya OI, Vancanneyt M, Cleenwerck I, Snauwaert C, Kim SB et al. Arenibacter palladensis sp. nov., a novel marine bacterium isolated from the green alga Ulva fenestrata, and emended description of the genus Arenibacter . Int J Syst Evol Microbiol 2006; 56: 155 160 [CrossRef] [PubMed]
    [Google Scholar]
  4. Nedashkovskaya OI, Kim SB, Lysenko AM, Lee KH, Bae KS et al. Arenibacter echinorum sp. nov., isolated from the sea urchin Strongylocentrotus intermedius . Int J Syst Evol Microbiol 2007; 57: 2655 2659 [CrossRef] [PubMed]
    [Google Scholar]
  5. Guo J, Sun J, Xu Y, Fang L, Jiao N et al. Arenibacter aquaticus sp. nov., a marine bacterium isolated from surface sea water in the South China Sea. Int J Syst Evol Microbiol 2020; 70: 958 963 [CrossRef] [PubMed]
    [Google Scholar]
  6. Jeong SH, Jin HM, Kim JM, Jeon CO. Arenibacter hampyeongensis sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2013; 63: 679 684 [CrossRef] [PubMed]
    [Google Scholar]
  7. Li A-Z, Lin L-Z, Zhang M-X, Lv Y, Zhu H-H. Arenibacter catalasegens sp. nov., isolated from marine surface sediment, and emended description of the genus Arenibacter . Int J Syst Evol Microbiol 2018; 68: 758 763 [CrossRef] [PubMed]
    [Google Scholar]
  8. Nedashkovskaya OI, Suzuki M, Vysotskii MV, Mikhailov VV. Arenibacter troitsensis sp. nov., isolated from marine bottom sediment. Int J Syst Evol Microbiol 2003; 53: 1287 1290 [CrossRef] [PubMed]
    [Google Scholar]
  9. Li A-Z, Lin L-Z, Zhang M-X, Zhu H-H. Arenibacter antarcticus sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2017; 67: 4601 4605 [CrossRef] [PubMed]
    [Google Scholar]
  10. Sun F, Wang B, Du Y, Liu X, Lai Q et al. Arenibacter nanhaiticus sp. nov., isolated from marine sediment of the South China Sea. Int J Syst Evol Microbiol 2010; 60: 78 83 [CrossRef] [PubMed]
    [Google Scholar]
  11. Vandamme P, Pot B, Gillis M, de Vos P, Kersters K et al. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 1996; 60: 407 438 [CrossRef] [PubMed]
    [Google Scholar]
  12. Surendra V, Bhawana P, Suresh K, Srinivas TNR, Anil Kumar P. Imtechella halotolerans gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from estuarine water. Int J Syst Evol Microbiol 2012; 62: 2624 2630 [CrossRef] [PubMed]
    [Google Scholar]
  13. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613 1617 [CrossRef] [PubMed]
    [Google Scholar]
  14. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725 2729 [CrossRef] [PubMed]
    [Google Scholar]
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111 120 [CrossRef] [PubMed]
    [Google Scholar]
  16. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10: 512 526 [CrossRef] [PubMed]
    [Google Scholar]
  17. Eren AM, Esen Özcan C, Quince C, Vineis JH, Morrison HG et al. Anvi'o: an advanced analysis and visualization platform for 'omics data. PeerJ 2015; 3: e1319 [CrossRef] [PubMed]
    [Google Scholar]
  18. Lee MD. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 2019; 35: 4162 4164 [CrossRef] [PubMed]
    [Google Scholar]
  19. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26: 1641 1650 [CrossRef] [PubMed]
    [Google Scholar]
  20. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049 1070
    [Google Scholar]
  21. Srinivas TNR, Aditya S, Bhumika V, Kumar PA, Bhumika V. Lunatimonas lonarensis gen. nov., sp. nov., a haloalkaline bacterium of the family Cyclobacteriaceae with nitrate reducing activity. Syst Appl Microbiol 2014; 37: 10 16 [CrossRef] [PubMed]
    [Google Scholar]
  22. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19: 1 67
    [Google Scholar]
  23. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria 149 New York: Cambridge University Press; 1965 p 852
    [Google Scholar]
  24. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 1974; 24: 54 63 [CrossRef]
    [Google Scholar]
  25. Baek S-H, Cui Y, Kim S-C, Cui C-H, Yin C et al. Tumebacillus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2011; 61: 1715 1719 [CrossRef] [PubMed]
    [Google Scholar]
  26. Sasser M. Identification of bacteria through fatty acid analysis. In Klement Z, Rudolph K, Sands Budapest DC. (editors) Methods in Phytobacteriology Hungry: Akademiai Kiado; 1990 pp 199 204
    [Google Scholar]
  27. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37: 911 917 [CrossRef] [PubMed]
    [Google Scholar]
  28. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161 207
    [Google Scholar]
  29. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35: 3100 3108 [CrossRef] [PubMed]
    [Google Scholar]
  30. Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 2004; 32: 11 16 [CrossRef] [PubMed]
    [Google Scholar]
  31. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25: 1043 1055 [CrossRef]
    [Google Scholar]
  32. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46: W95 W101 [CrossRef] [PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J, Glo FO. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32: 929 931 [CrossRef] [PubMed]
    [Google Scholar]
  34. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81 91 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004664
Loading
/content/journal/ijsem/10.1099/ijsem.0.004664
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error