1887

Abstract

A novel actinobacterium, designated strain NEAU-D13, was isolated from soil collected from Aohan Banner, Chifeng, Inner Mongolia Autonomous Region, China and characterized using a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain NEAU-D13 belonged to the genus and shared the highest sequence similarity with JCM 14913 (99.17 %). Morphological and chemotaxonomic characteristics of the strain also supported its assignment to the genus . Cell walls contained -diaminopimelic acid as the diagnostic diamino acid and the whole-cell sugars were ribose and mannose. The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine and phosphatidylinositol. The menaquinone was only MK-9(H). The major fatty acids were -C, C, -C, -C and -C. DNA G+C content was 68.71 mol%. Phylogenetic analysis using the 16S rRNA gene sequences showed that the strain formed a stable clade with JCM 14913 in the genus . Meanwhile, a combination of digital DNA–DNA hybridization results and some phenotypic characteristics demonstrated that strain NEAU-D13 could be distinguished from its closely related strain. Therefore, it is concluded that strain NEAU-D13 represents a novel species of the genus , for which the name sp. nov. is proposed, with NEAU-D13 (=CCTCC AA 2019089=JCM 33970) as the type strain.

Funding
This study was supported by the:
  • JiaSong , “Academic Backbone” Project of Northeast Agricultural University , (Award 19XG18)
  • JiaSong , Heilongjiang Provincial Postdoctoral Science Foundation , (Award LBH-Z15016)
  • JiaSong , China Postdoctoral Science Foundation , (Award 2015M580255)
  • JiaSong , National Natural Science Foundation of China , (Award 31700067)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004661
2021-01-27
2021-03-02
Loading full text...

Full text loading...

References

  1. Yassin AF, Rainey FA, Brzezinka H, Jahnke KD, Weissbrodt H et al. Lentzea gen. nov., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1995; 45:357–363 [CrossRef][PubMed]
    [Google Scholar]
  2. Lee SD, Kim ES, Roe JH, Kim J, Kang SO et al. Saccharothrix violacea sp. nov., isolated from a gold mine cave, and Saccharothrix albidocapillata comb. nov. Int J Syst Evol Microbiol 2000; 50 Pt 3:1315–1323 [CrossRef][PubMed]
    [Google Scholar]
  3. Labeda DP, Hatano K, Kroppenstedt RM, Tamura T. Revival of the genus Lentzea and proposal for Lechevalieria gen. nov. Int J Syst Evol Microbiol 2001; 51:1045–1050 [CrossRef][PubMed]
    [Google Scholar]
  4. Li D, Zheng W, Zhao J, Han L, Zhao X et al. Lentzea soli sp. nov., an actinomycete isolated from soil. Int J Syst Evol Microbiol 2018; 68:1496–1501 [CrossRef][PubMed]
    [Google Scholar]
  5. Li D, Jiang H, Han L, Li Y, Zhao J, DM L et al. Lentzea terrae sp. nov., isolated from soil and an emended description of Lentzea soli. Int J Syst Evol Microbiol 2018; 68:3528–3533 [CrossRef][PubMed]
    [Google Scholar]
  6. Labeda DP, Goodfellow M, Chun J, Zhi XY, Li W-J. Reassessment of the systematics of the suborder Pseudonocardineae: transfer of the genera within the family Actinosynnemataceae Labeda and Kroppenstedt 2000 emend. Zhi et al. 2009 into an emended family Pseudonocardiaceae Embley et al. 1989 emend. Zhi et al. 2009. Int J Syst Evol Microbiol 2011; 61:1259–1264 [CrossRef][PubMed]
    [Google Scholar]
  7. Labeda DP et al. Genus XI. Lentzea Yassin, Rainey, Brzezinka, Jahnke, Weissbrodt, Budzikiewicz, Stackebrandt and Schaal 1995, 1125VP emend. Labeda, Hatano, Kroppenstedt and Tamura 2001, 1049. In Goodfellow M, Kampfer P, Busse H-J, Trujillo ME, Suzuki K-I. (editors) Bergey’s Manual of Systematic Bacteriology, Part A 5, 2nd ed. New York: Springer; 2012 pp 1379–1383
    [Google Scholar]
  8. Piao C, Zheng W, Li Y, Liu C, Jin L et al. Two new species of the genus Streptomyces: Streptomyces camponoti sp. nov. and Streptomyces cuticulae sp. nov. isolated from the cuticle of Camponotus japonicus Mayr. Arch Microbiol 2017; 199:963–970 [CrossRef][PubMed]
    [Google Scholar]
  9. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [CrossRef]
    [Google Scholar]
  10. Jin L, Zhao Y, Song W, Duan L, Jiang S et al. Streptomyces inhibens sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2019; 69:688–695 [CrossRef][PubMed]
    [Google Scholar]
  11. Waksman SA. The Actinomycetes. A Summary of Current Knowledge New York: Ronald Press; 1967
    [Google Scholar]
  12. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57:141–145 [CrossRef][PubMed]
    [Google Scholar]
  13. Kelly KL. Inter-society colour council-national Bureau of standards colour-name charts illustrated with centroid colours published in US; 1964
  14. Jia F, Liu C, Wang X, Zhao J, Liu Q et al. Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie van Leeuwenhoek 2013; 103:399–408 [CrossRef][PubMed]
    [Google Scholar]
  15. Cao P, Li C, Tan K, Liu C, Xu X et al. Characterization, Phylogenetic Analyses, and Pathogenicity of Enterobacter cloacae on rice seedlings in heilongjiang province, China. Plant Dis 2020; 104:1601–1609 [CrossRef][PubMed]
    [Google Scholar]
  16. Zhao J, Han L, Yu M, Cao P, Li D, MY Y, DM L et al. Characterization of Streptomyces sporangiiformans sp. nov., a novel soil actinomycete with antibacterial activity against Ralstonia solanacearum. Microorganisms 2019; 7:360 [CrossRef][PubMed]
    [Google Scholar]
  17. Gordon RE, Barnett DA, Handerhan JE, Pang C. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [CrossRef]
    [Google Scholar]
  18. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1993; 43:805–812 [CrossRef]
    [Google Scholar]
  19. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC.: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  20. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000; 30:178–182 [CrossRef][PubMed]
    [Google Scholar]
  21. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Actinomycete Taxonomy (Special Publication vol 6) Arlington: Society of Industrial Microbiology; 1980 pp 227–291
    [Google Scholar]
  22. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  23. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp 267–284
    [Google Scholar]
  24. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16:176–178
    [Google Scholar]
  25. Song J, Qiu SW, Zhao JW, Han CY, Wang Y et al. Pseudonocardia tritici sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Antonie van Leeuwenhoek 2019; 112:765–773 [CrossRef][PubMed]
    [Google Scholar]
  26. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M. Thin-Layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 1980; 188:221–233 [CrossRef]
    [Google Scholar]
  27. Gao RX, Liu CX, Zhao JW, Jia FY, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014; 105:307–315 [CrossRef][PubMed]
    [Google Scholar]
  28. Xiang WS, Liu CX, Wang XJ, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61:1165–1169 [CrossRef][PubMed]
    [Google Scholar]
  29. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S et al. Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 2000; 50 Pt 6:2031–2036 [CrossRef][PubMed]
    [Google Scholar]
  30. Yoon SH, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  31. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  32. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  33. Kumar S, Stecher G, Tamura K. mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  34. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  35. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  36. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [CrossRef][PubMed]
    [Google Scholar]
  37. Li R, Li Y, Kristiansen K, Wang J. Soap: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [CrossRef][PubMed]
    [Google Scholar]
  38. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [CrossRef][PubMed]
    [Google Scholar]
  39. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  40. Yoon SH, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  41. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  42. Richter M, Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  43. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [CrossRef][PubMed]
    [Google Scholar]
  44. Labeda DP, Donahue JM, Sells SF, Kroppenstedt RM. Lentzea kentuckyensis sp. nov., of equine origin. Int J Syst Evol Microbiol 2007; 57:1780–1783 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004661
Loading
/content/journal/ijsem/10.1099/ijsem.0.004661
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error