1887

Abstract

Two novel Gram-strain-negative and rod-shaped bacteria, designated strain G1 and G2, were isolated from sediment samples collected from the coast of Xiamen, PR China. The cells were motile by a single polar flagellum. Growth of strain G1 occurred at 10–40 °C (optimum, 30 °C), at pH 6.0–9.0 (optimum, pH 7.5) and with 5–1530 mM NaCl (optimum, 510 mM), while the temperature, pH and NaCl concentration ranges for G2 were 4–45 °C (optimum, 28 °C), pH 5.5–8.0 (optimum, pH 6.5) and 85–1530 mM NaCl (optimum, 340 mM). The two isolates were obligate chemolithoautotrophs capable of using thiosulfate, sulfide, elemental sulphur or tetrathionate as an energy source. Strain G1 used molecular oxygen or nitrite as an electron acceptor, while strain G2 used molecular oxygen as the sole electron acceptor. The dominant fatty acids of G1 and G2 were summed feature 3 (C ω7 and/or C ω6), C and summed feature 8 (C ω7 and/or C ω6). The DNA G+C content of G1 and G2 were 45.1 and 48.3 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain G1 and G2 were members of the genus , and most closely related to MAS2 (96.0 %) and 13-15A (95.4 %), respectively. The 16S rRNA gene sequence similarity between strains G1 and G2 was 95.8 %. Based on the phylogenetic, genomic and phenotypic data presented here, the isolate strains represent novel species of the genus , for which the names sp. nov. (type strain G1=MCCC 1A14511=KCTC 15841) and sp. nov. (type strain G2=MCCC 1A14512=KCTC 15842) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004660
2021-01-27
2021-10-28
Loading full text...

Full text loading...

References

  1. Boden R, Scott KM, Williams J, Russel S, Antonen K et al. An evaluation of Thiomicrospira, Hydrogenovibrio and Thioalkalimicrobium: reclassification of four species of Thiomicrospira to each Thiomicrorhabdus gen. nov. and Hydrogenovibrio, and reclassification of all four species of Thioalkalimicrobium to Thiomicrospira. Int J Syst Evol Microbiol 2017; 67:1140–1151 [View Article][PubMed]
    [Google Scholar]
  2. Brinkhoff T, Muyzer G, Wirsen CO, Kuever J. Thiomicrospira kuenenii sp. nov. and Thiomicrospira frisia sp. nov., two mesophilic obligately chemolithoautotrophic sulfur-oxidizing bacteria isolated from an intertidal mud flat. Int J Syst Bacteriol 1999; 49 Pt 2:385–392 [View Article][PubMed]
    [Google Scholar]
  3. Watsuji TO, Hada E, Miyazaki M, Ichimura M, Takai K. Thiomicrospira hydrogeniphila sp. nov., an aerobic, hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from a seawater tank containing a block of beef tallow. Int J Syst Evol Microbiol 2016; 66:3688–3693 [View Article][PubMed]
    [Google Scholar]
  4. Kojima H, Fukui M. Thiomicrorhabdus aquaedulcis sp. nov., a sulfur-oxidizing bacterium isolated from lake water. Int J Syst Evol Microbiol 2019; 69:2849–2853 [View Article][PubMed]
    [Google Scholar]
  5. Liu X, Jiang L, Hu Q, Lyu J, Shao Z. Thiomicrorhabdus indica sp. nov., an obligately chemolithoautotrophic, sulfur-oxidizing bacterium isolated from a deep-sea hydrothermal vent environment. Int J Syst Evol Microbiol 2019ijsem003744
    [Google Scholar]
  6. Brinkhoff T, Muyzer G, Wirsen CO, Kuever J. Thiomicrospira chilensis sp. nov., a mesophilic obligately chemolithoautotrophic sulfuroxidizing bacterium isolated from a Thioploca mat. Int J Syst Bacteriol 1999; 49 Pt 2:875–879 [View Article][PubMed]
    [Google Scholar]
  7. Knittel K, Kuever J, Meyerdierks A, Meinke R, Amann R et al. Thiomicrospira arctica sp. nov. and Thiomicrospira psychrophila sp. nov., psychrophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacteria isolated from marine Arctic sediments. Int J Syst Evol Microbiol 2005; 55:781–786 [View Article][PubMed]
    [Google Scholar]
  8. Boden M, Scott M, Kathleen M. Reclassification of Thiomicrospira hydrogeniphila (Watsuji, et al. 2016) to Thiomicrorhabdus hydrogenophila comb. nov., with emended description of Thiomicrorhabdus (Boden, et al., 2017) (vol 67, PG 4205, 2017). Int J Syst Evol Microbiol 2018
    [Google Scholar]
  9. Takai K, Inagaki F, Nakagawa S, Hirayama H, Nunoura T et al. Isolation and phylogenetic diversity of members of previously uncultivated epsilon-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 2003; 218:167–174 [View Article][PubMed]
    [Google Scholar]
  10. Jiang L, Lyu J, Shao Z. Sulfur Metabolism of Hydrogenovibrio thermophilus Strain S5 and Its Adaptations to Deep-Sea Hydrothermal Vent Environment. Front Microbiol 2017; 8:2513 [View Article][PubMed]
    [Google Scholar]
  11. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979; 43:260–296 [View Article][PubMed]
    [Google Scholar]
  12. Takai K, Horikoshi K. Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 2000; 4:9–17 [View Article][PubMed]
    [Google Scholar]
  13. Jiang LJ, Zheng YP, Peng XT, Zhou HY, Zhang CL. Vertical distribution and diversity of sulfate-reducing prokaryotes in the pearl river estuarine sediments, southern China. Fems Microbiol Ecol 2010; 70:93–106
    [Google Scholar]
  14. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article][PubMed]
    [Google Scholar]
  15. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  16. Kumar S, Stecher G, Tamura K. mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  19. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992; 35:367–375 [View Article][PubMed]
    [Google Scholar]
  20. Kimura M, Motoo K. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  22. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article][PubMed]
    [Google Scholar]
  23. Lowe TM, Chan PP. tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research 2016; 44:W1–W57 [View Article]
    [Google Scholar]
  24. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  25. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 2007; 23:673–679 [View Article][PubMed]
    [Google Scholar]
  26. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  27. Yoon SH, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  29. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. Ncbi prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  30. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article][PubMed]
    [Google Scholar]
  31. Tyson K, Busby S, Cole J. Catabolite regulation of two Escherichia coli operons encoding nitrite reductases: role of the Cra protein. Arch Microbiol 1997; 168:240–244 [View Article][PubMed]
    [Google Scholar]
  32. Malm S, Tiffert Y, Micklinghoff J, Schultze S, Joost I et al. The roles of the nitrate reductase narGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis. Microbiology 2009; 155:1332–1339 [View Article][PubMed]
    [Google Scholar]
  33. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed]
    [Google Scholar]
  34. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids; 1990
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004660
Loading
/content/journal/ijsem/10.1099/ijsem.0.004660
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error