1887

Abstract

Four novel strains isolated from the cloacal contents of snow finches () were characterized as aerobic, Gram-stain-negative, slightly motile, and rod-shaped. Analysis of the 16S rRNA gene sequence revealed that strain CF-458 had the highest similarities of 96.9 and 96.4 % with HYN0051 and DSM 5563, while strain CF-1111 shared the highest similarities of 96.4 and 96.1 % with LMG 26273 and SS95. Phylogenomic analysis showed the four isolates were separated into group Ⅰ (CF-458 and CF-917) and group Ⅱ (CF-1111 and CF-509), and clustered independently in the vicinity of the genera and . Summed feature 3 (C 7 and/or C 6, 23.9 and 17.2 %, respectively), C (21.8 and 22.1 %, respectively) and C (10.6 and 17.7 %, respectively) were the common major fatty acids, and summed feature 8 (C 7 and/or C 6, 12.3 %) was also a major fatty acid for strain CF-458 while cyclo-C (13.1%) was for strain CF-1111. Both had Q-8 as the sole quinone and contained phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol as the major polar lipids. The DNA G+C content of strains CF-458 and CF-1111 was 45.7 and 45.4 mol%, respectively. Based on taxonomic position in the phylogenomic tree and phenotypic properties, two novel species of a new genus within the family are thus proposed, with the name gen. nov., sp. nov. (type strain CF-458=CGMCC 1.16483=GDMCC 1.1586=JCM 33489) and sp. nov. (type strain CF-1111=CGMCC 1.16786=GDMCC 1.1587=JCM 33490), respectively.

Funding
This study was supported by the:
  • JianguoXu , Research Units of Discovery of Unknown Bacteria and Function , (Award 2018RU010)
  • JianguoXu , Sanming Project of Medicine in Shenzhen , (Award SZSM201811071)
  • DongJin , National Key R&D Program of China , (Award 2018YFC1200102)
  • ShanLu , National Major Science and Technology Projects of China , (Award 2018ZX10712001-018)
  • JingYang , National Science and Technology Major Project of China , (Award 2018ZX10712001-007)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004653
2021-01-22
2021-03-02
Loading full text...

Full text loading...

References

  1. Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:5575–5599 [CrossRef][PubMed]
    [Google Scholar]
  2. Lang E, Schumann P, Knapp BA, Kumar R, Spröer C et al. Budvicia diplopodorum sp. nov. and emended description of the genus Budvicia. Int J Syst Evol Microbiol 2013; 63:260–267 [CrossRef][PubMed]
    [Google Scholar]
  3. Bouvet OMM, Grimont PAD, Richard C, Aldova E, Hausner O et al. Budvicia aquatica gen. nov., sp. nov.: a hydrogen sulfide-producing member of the Enterobacteriaceae. Int J Syst Bacteriol 1985; 35:60–64 [CrossRef]
    [Google Scholar]
  4. Hickman-Brenner FW, Vohra MP, Huntley-Carter GP, Fanning GR, Lowery VA et al. Leminorella, a new genus of Enterobacteriaceae: identification of Leminorella grimontii sp. nov. and Leminorella richardii sp. nov. found in clinical specimens. J Clin Microbiol 1985; 21:234–239 [CrossRef][PubMed]
    [Google Scholar]
  5. Aldova E, Hausner O, Brenner DJ, Kocmoud Z, Schindler J et al. Pragia fontium gen. nov., sp. nov. of the family Enterobacteriaceae, isolated from water. Int J Syst Bacteriol 1988; 38:183–189 [CrossRef]
    [Google Scholar]
  6. Ge Y, Yang J, Lai X-H, Zhang G, Jin D et al. Vagococcus xieshaowenii sp. nov., isolated from snow finch (Montifringilla taczanowskii) cloacal content. Int J Syst Evol Microbiol 2020; 70:2493–2498 [CrossRef][PubMed]
    [Google Scholar]
  7. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  8. Baek C, Shin S-K, Yi H. Limnobaculum parvum gen. nov., sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 2019; 69:1826–1830 [CrossRef][PubMed]
    [Google Scholar]
  9. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  10. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  11. Kolaczkowski B, Thornton JW. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 2004; 431:980–984 [CrossRef][PubMed]
    [Google Scholar]
  12. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  14. Naum M, Brown EW, Mason-Gamer RJ. Is 16S rDNA a reliable phylogenetic marker to characterize relationships below the family level in the enterobacteriaceae?. J Mol Evol 2008; 66:630–642 [CrossRef][PubMed]
    [Google Scholar]
  15. Kuhnert P, Korczak BM, Stephan R, Joosten H, Iversen C. Phylogeny and prediction of genetic similarity of Cronobacter and related taxa by multilocus sequence analysis (MLSA). Int J Food Microbiol 2009; 136:152–158 [CrossRef][PubMed]
    [Google Scholar]
  16. Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst Appl Microbiol 2013; 36:309–319 [CrossRef][PubMed]
    [Google Scholar]
  17. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015; 31:1674–1676 [CrossRef][PubMed]
    [Google Scholar]
  18. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [CrossRef][PubMed]
    [Google Scholar]
  19. Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 2015; 33:623–630 [CrossRef][PubMed]
    [Google Scholar]
  20. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  21. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  22. Wayne LG. International Committee on systematic bacteriology: announcement of the report of the AD hoc Committee on reconciliation of approaches to bacterial systematics. Zentralblatt fur Bakteriologie, Mikrobiologie, und hygiene series a. Medical Microbiology, Infectious Diseases, Virology, Parasitology 1988; 268:433–434
    [Google Scholar]
  23. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [CrossRef][PubMed]
    [Google Scholar]
  24. Chen C, Zhang W, Zheng H, Lan R, Wang H et al. Minimum core genome sequence typing of bacterial pathogens: a unified approach for clinical and public health microbiology. J Clin Microbiol 2013; 51:2582–2591 [CrossRef][PubMed]
    [Google Scholar]
  25. Austrian R. The gram stain and the etiology of lobar pneumonia, an historical note. Bacteriol Rev 1960; 24:261–265 [CrossRef][PubMed]
    [Google Scholar]
  26. Xu Y, Xu X, Lan R, Xiong Y, Ye C et al. An O island 172 encoded RNA helicase regulates the motility of Escherichia coli O157:H7. PLoS One 2013; 8:e64211 [CrossRef][PubMed]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids 101, Technical Note, MIDI. 1990 pp 1–7
    [Google Scholar]
  28. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [CrossRef][PubMed]
    [Google Scholar]
  29. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16:176–178
    [Google Scholar]
  30. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004653
Loading
/content/journal/ijsem/10.1099/ijsem.0.004653
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error