1887

Abstract

During a project focusing on the diversity of meat microbiota associated with beef ripening, a strain was isolated exhibiting high 16S rRNA gene sequence similarities (>99 %) to DSM 107652, DSM 29167, DSM 29164 and DSM 18862. Phylogenetic analysis of the complete gene sequences of the isolate V5/DAB/2/5 indicated a separate branch with about 99.0 % nucleotide identities to the closest relatives DSM 107652, DSM 29167 and DSM 29164, while average nucleotide identities (ANIb) calculated from the draft genomes were 94.8, 94.2 and 90.2 %, respectively. Pairwise genome-to-genome distance calculations (GGDC) resulted in values of 67.7, 63.5 and 45.7 %, respectively, lying below the actual species demarcation line as well. A second isolate, UBT403, was detected some years later by using matrix-assisted laser desorption ionization-time of flight MS of the microbiota of minced beef. The fatty acid profile of V5/DAB/2/5 consisted of C, summed feature C 7/iso-C 2-OH, C c, C cyclo, C, C 3-OH, C 3-OH and C 2-OH. The major cellular lipids were aminopholipids, phospholipids, phosphatidylethanolamine and phosphatidylglycerol; the major quinone was Q9 with a minor proportion of Q8. Based on phenotypic and chemotaxonomic characterizations, the isolates can be considered as representing a novel species, for which the name sp. nov. is proposed. The type strain is V5/DAB/2/5 (=DSM 111363=LMG 31846); a second strain is UBT403 (=DSM 111362=LMG 31847).

Keyword(s): Pseudomonas , dry ageing , meat ripening , beef and meat
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004652
2021-01-22
2021-02-26
Loading full text...

Full text loading...

References

  1. Tran PN, Savka MA, Gan HM. In-silico taxonomic classification of 373 genomes reveals species misidentification and new genospecies within the genus Pseudomonas . Front Microbiol 2017; 8: 1296 [CrossRef] [PubMed]
    [Google Scholar]
  2. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106: 19126 19131 [CrossRef] [PubMed]
    [Google Scholar]
  3. Euzéby JP. List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Bacteriol 1997; 47: 590 592 [CrossRef] [PubMed]
    [Google Scholar]
  4. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42: D613 D616 [CrossRef] [PubMed]
    [Google Scholar]
  5. Madigan MT, Martinko JM, Parker J. Procaryotic Diversity: Bacteria. Brock Biology of Microorganisms Upper Saddle River, New Jersey: Prentice Hall International, Inc; 1997
    [Google Scholar]
  6. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM et al. . Induced Systemic resistance by beneficial microbes. In Van Alfen NK. editor Annu Rev Phytopathol 52 2014 pp 347 375 [CrossRef]
    [Google Scholar]
  7. Hol WHG, Bezemer TM, Biere A. Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens . Front Plant Sci 2013; 4: 81 [CrossRef] [PubMed]
    [Google Scholar]
  8. Andreani NA, Martino ME, Fasolato L, Carraro L, Montemurro F et al. Reprint of 'Tracking the blue: a MLST approach to characterise the Pseudomonas fluorescens group'. Food Microbiol 2015; 45: 148 158 [CrossRef] [PubMed]
    [Google Scholar]
  9. von Neubeck M, Huptas C, Glück C, Krewinkel M, Stoeckel M et al. . Pseudomonas lactis sp. nov. and Pseudomonas paralactis sp. nov., isolated from bovine raw milk. Int J Syst Evol Microbiol 2017; 67: 1656 1664 [CrossRef] [PubMed]
    [Google Scholar]
  10. Nychas GJE, Marshall DL, Sofos JN. Meat, poultry and seafood - microbial spoilage and public health concerns. In Doyle MP, Beuchat LR. (editors) Food Microbiology - Fundamentals and Frontiers Washington, DC: ASM Press; 2007 pp 105 140
    [Google Scholar]
  11. Kröckel L. Beef maturation using starter cultures. Mitteilungsblatt der Fleischforschung Kulmbach 2012; 51: 87 95
    [Google Scholar]
  12. Versalovic J, Schneider M, De Bruijn FJ, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 1994; 5: 25 40
    [Google Scholar]
  13. Lane DJ. 16S/23S rRNA sequencing. In Goodfellow M, Stackebrandt E. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: John Wiley and Sons; 1991 pp 115 175
    [Google Scholar]
  14. Olofsson TC, Ahrné S, Molin G. Composition of the bacterial population of refrigerated beef, identified with direct 16S rRNA gene analysis and pure culture technique. Int J Food Microbiol 2007; 118: 233 240 [CrossRef] [PubMed]
    [Google Scholar]
  15. Adékambi T, Shinnick TM, Raoult D, Drancourt M. Complete rpoB gene sequencing as a suitable supplement to DNA-DNA hybridization for bacterial species and genus delineation. Int J Syst Evol Microbiol 2008; 58: 1807 1814 [CrossRef] [PubMed]
    [Google Scholar]
  16. Lick S, Kröckel L, Wibberg D, Winkler A, Blom J et al. . Pseudomonas carnis sp. nov., isolated from meat. Int J Syst Evol Microbiol 2020; 70: 1528 1540 [CrossRef] [PubMed]
    [Google Scholar]
  17. Hall TA. BioEdit, a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT; version 7.2.5. Nucl Acids Symp 1999 95 98
    [Google Scholar]
  18. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35: 1547 1549 [CrossRef] [PubMed]
    [Google Scholar]
  19. Iizuka H, Komagata K. An attempt at grouping of the genus Pseudomonas . J Gen Appl Microbiol 1963; 9: 73 82 [CrossRef]
    [Google Scholar]
  20. Tambong JT, Xu R, Bromfield ESP. Pseudomonas canadensis sp. nov., a biological control agent isolated from a field plot under long-term mineral fertilization. Int J Syst Evol Microbiol 2017; 67: 889 895 [CrossRef] [PubMed]
    [Google Scholar]
  21. Vela AI, Gutiérrez MC, Falsen E, Rollán E, Simarro I et al. . Pseudomonas simiae sp. nov., isolated from clinical specimens from monkeys (Callithrix geoffroyi). Int J Syst Evol Microbiol 2006; 56: 2671 2676 [CrossRef] [PubMed]
    [Google Scholar]
  22. Verhille S, Baïda N, Dabboussi F, Hamze M, Izard D et al. Pseudomonas gessardii sp. nov. and Pseudomonas migulae sp. nov., two new species isolated from natural mineral waters. Int J Syst Bacteriol 1999; 49: 1559 1572 [CrossRef] [PubMed]
    [Google Scholar]
  23. Paine S. Studies on bacteriosis II, a brown blotch disease of cultivated mushrooms. Ann Appl Biol 1919; 5: 206 219
    [Google Scholar]
  24. Behrendt U, Ulrich A, Schumann P, Meyer J-M, Spröer C. Pseudomonas lurida sp. nov., a fluorescent species associated with the phyllosphere of grasses. Int J Syst Evol Microbiol 2007; 57: 979 985 [CrossRef] [PubMed]
    [Google Scholar]
  25. Ivanova EP, Gorshkova NM, Sawabe T, Hayashi K, Kalinovskaya NI et al. Pseudomonas extremorientalis sp. nov., isolated from a drinking water reservoir. Int J Syst Evol Microbiol 2002; 52: 2113 2120 [CrossRef] [PubMed]
    [Google Scholar]
  26. Hofmann K, Huptas C, Doll EV, Scherer S, Wenning M. Pseudomonas haemolytica sp. nov., isolated from raw milk and skimmed milk concentrate. Int J Syst Evol Microbiol 2020; 70: 2339 2347 [CrossRef] [PubMed]
    [Google Scholar]
  27. Ehrenberg CG. Charakteristik von 274 neuen Berlin: Arten von Infusorien; 1840
    [Google Scholar]
  28. Dabboussi F, Hamze M, Elomari M, Verhille S, Baida N, Baїda N et al. . Taxonomic study of bacteria isolated from Lebanese spring waters: proposal for Pseudomonas cedrella sp. nov. and P. orientalis sp. nov. Res Microbiol 1999; 150: 303 316 [CrossRef] [PubMed]
    [Google Scholar]
  29. Dabboussi F, Hamze M, Elomari M, Verhille S, Baida N et al. Pseudomonas libanensis sp. nov., a new species isolated from Lebanese spring waters. Int J Syst Bacteriol 1999; 49 Pt 3: 1091 1101 [CrossRef] [PubMed]
    [Google Scholar]
  30. JGI –Joint genome Institute https://jgi.doe.gov/user-program-info/pmo-overview/protocols-sample-preparation-information, JGI Bacterial DNA isolation CTAB-2012.
  31. Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A et al. . Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol 2013; 20: 714 737 [CrossRef] [PubMed]
    [Google Scholar]
  32. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. . Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27: 722 736 [CrossRef] [PubMed]
    [Google Scholar]
  33. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30: 2068 2069 [CrossRef] [PubMed]
    [Google Scholar]
  34. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9: e112963 [CrossRef] [PubMed]
    [Google Scholar]
  35. Li HW. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: Genomics 2013 1303.3997v2
    [Google Scholar]
  36. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9: 357 359 [CrossRef] [PubMed]
    [Google Scholar]
  37. Blom J, Kreis J, Spänig S, Juhre T, Bertelli C et al. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 2016; 44: W22 W28 [CrossRef] [PubMed]
    [Google Scholar]
  38. Blom J, Albaum SP, Doppmeier D, Pühler A, Vorhölter F-J et al. . EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics 2009; 10: 154 [CrossRef] [PubMed]
    [Google Scholar]
  39. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 14 [CrossRef]
    [Google Scholar]
  40. Price MN, Dehal PS, Arkin AP. FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5: e9490 [CrossRef] [PubMed]
    [Google Scholar]
  41. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954; 44: 301 307 [PubMed]
    [Google Scholar]
  42. Ryu E. A simple method of differentiation between Gram-positive and Gram-negative organisms without staining. Kitasato Arch Exp Med 1940; 17: 58 63
    [Google Scholar]
  43. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61: 3756 3758 [CrossRef] [PubMed]
    [Google Scholar]
  44. Atlas RM. Handbook of Microbiological Media , 2 ed. Boca Raton, Fl: CRC Press Inc; 1997
    [Google Scholar]
  45. Reddy GSN, Matsumoto GI, Schumann P, Stackebrandt E, Shivaji S. Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int J Syst Evol Microbiol 2004; 54: 713 719 [CrossRef] [PubMed]
    [Google Scholar]
  46. Stead DE. Grouping of plant-pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles. Int J Syst Bacteriol 1992; 42: 281 295 [CrossRef]
    [Google Scholar]
  47. Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 1999; 16: 1114 1116 [CrossRef]
    [Google Scholar]
  48. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. . DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81 91 [CrossRef] [PubMed]
    [Google Scholar]
  49. Hugh R, Guarraia L, Hatt H. The proposed neotype strains of Pseudomonas fluorescens (Trevisan) Migula 1895. Int Bull Bact Nomencl Tax 1964; 14: 145 156 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004652
Loading
/content/journal/ijsem/10.1099/ijsem.0.004652
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error