1887

Abstract

The saline-alkaline lakes (soda lakes) are the habitat of the haloalkaliphilic cyanobacterium , the type species of this genus. To obtain robust phylogeny of this type species, we have generated whole-genome sequencing of the bloom-forming strain CCIBt3563 isolated from a Brazilian soda lake. This strain presents the typical morphology of with short and curved trichomes with apical heterocytes established after separation of paired intercalary heterocytes and also regarding to cell dimensions. Its genome size is 4 495 068 bp, with a G+C content of 41.98 %, a total of 3932 potential protein coding genes and four 16S rRNA genes. Phylogenomic tree inferred by RAxML based on the alignment of 120 conserved proteins using GTDB-Tk grouped CCIBt3563 together with other genera of the family Aphanizomenonaceae. However, the only previous available genome of NIES-21 was distantly positioned within a clade of strains, a genus from the family Nostocaceae. Furthermore, average nucleotide identity values from 86–98 % were obtained among NIES-21 and genomes, while this value was 76.04 % between NIES-21 and the CCIBt3563 genome. These findings were also corroborated by the phylogenetic tree of 16S rRNA gene sequences, which also showed a strongly supported subcluster of strains from Brazilian, Mexican and Kenyan soda lakes. This study presents the phylogenomics and genome-scale analyses of an strain, improving molecular basis for demarcation of this species and framework for the classification of cyanobacteria based on the polyphasic approach.

Keyword(s): Genome , Soda lake , Ecology and Cyanobacteria
Funding
This study was supported by the:
  • MarliFátima Fiore , Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) , (Award 433166/2018-5)
  • NotApplicable , Fundação de Amparo à Pesquisa do Estado de São Paulo , (Award 2016/14227-5)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004648
2021-01-21
2021-02-26
Loading full text...

Full text loading...

References

  1. Komárek J, Kastovsky J, Mares J, Johansen JR. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 2014; 86: 295 335
    [Google Scholar]
  2. Komárek J. Phenotypic diversity of the heterocytous cyanoprokaryotic genus Anabaenopsis . Czech Phycol Olomouc 2005; 5: 1 35
    [Google Scholar]
  3. West GS. Report of the freshwater algae INCL. phytoplankton of the third Tanganyika expedition. J Linn Soc Bot 1907; 38: 81 197
    [Google Scholar]
  4. Wołoszyńska J. Das Phytoplankton einiger javanischer Seen, mit Berücksichtigung des Sawa-Planktons. Bull Acad Sci Cracovie, mat nat. ser 1912 649 709
    [Google Scholar]
  5. Miller VV. K sistematike roda Anabaena Bory [Zur Systematik der Gattung Anabaena Bory]. Arch russk Protistol Obšč 1923; 2: 116 126
    [Google Scholar]
  6. Hindák F. Planktic species of two related genera Cylindrospermopsis and Anabaenopsis from Western Slovakia. Algol Stud 1988; 50-53: 283 302
    [Google Scholar]
  7. Komárek J. Cyanoprokaryota -3. Teil/ 3rd Part: Heterocytous genera. In Büdel B, Gärtner G, Krienitz L, Schagerl M. (editors) Süsswasserflora von Mitteleuropa 19/3. Elsevier/Spektrum Heidelberg: 2013 pp 1 1130
    [Google Scholar]
  8. Ballot A, Dadheech PK, Haande S, Krienitz L. Morphological and phylogenetic analysis of Anabaenopsis abijatae and Anabaenopsis elenkinii (Nostocales, cyanobacteria) from tropical inland water bodies. Microb Ecol 2008; 55: 608 618 [CrossRef] [PubMed]
    [Google Scholar]
  9. Jeeji-Bai N, Hegewald E, Soeder CJ. Taxonomic studies on the genus Anabaenopsis . In Desikachary TV. editor Taxonomy of Algae Chennai: University of Madras; 1980 pp 115 142
    [Google Scholar]
  10. Santos KRS, Sant’Anna CL. Cyanobacteria from different types of lakes ("salina", "salitrada" and "baía") representative of the Pantanal da Nhecolândia, MS, Brazil. Rev Bras Bot 2010; 33: 61 83
    [Google Scholar]
  11. Aguilera A, Komárek JIŘĺ, Echenique RO. Anabaenopsis morphospecies (cyanobacteria, Nostocales) from Los Patos shallow lake (Province of Buenos Aires, Argentina). Phytotaxa 2016; 272: 173 183 [CrossRef]
    [Google Scholar]
  12. Genuário DB, Andreote APD, Vaz MGMV, Fiore MF. Heterocyte-forming cyanobacteria from Brazilian saline-alkaline lakes. Mol Phylogenet Evol 2017; 109: 105 112 [CrossRef] [PubMed]
    [Google Scholar]
  13. Santos KRDES, Hentschke GS, Andreote ANAPD, Laughinghouse IV HD, Ballot A et al. Polyphasic characterization of newly isolated Anabaenopsis (Cyanobacteria) strains from tropical Brazil and Mexico. Phytotaxa 2018; 367: 1 12 [CrossRef]
    [Google Scholar]
  14. Andreote APD, Dini-Andreote F, Rigonato J, Machineski GS, Souza BCE et al. Contrasting the genetic patterns of microbial communities in soda lakes with and without cyanobacterial bloom. Front Microbiol 2018; 9: 244 [CrossRef] [PubMed]
    [Google Scholar]
  15. Đorđević NB, Simić SB. Cyanobacterial blooms in oligosaline and alkaline microaccumulation before and after rehabilitation. Pol J Environ Stud 2014; 23: 1975 1982
    [Google Scholar]
  16. Krienitz L, Dadheech PK, Kotut K. Mass developments of the cyanobacteria Anabaenopsis and Cyanospira (Nostocales) in the soda lakes of Kenya: ecological and systematic implications. Hydrobiologia 2013; 703: 79 93 [CrossRef]
    [Google Scholar]
  17. Iteman I, Rippka R, Tandeau de Marsac N, Herdman M. rDNA analyses of planktonic heterocystous cyanobacteria, including members of the genera Anabaenopsis and Cyanospira . Microbiology 2002; 148: 481 496 [CrossRef] [PubMed]
    [Google Scholar]
  18. Komárek J. Modern taxonomic revision of planktic nostocacean cyanobacteria: a short review of genera. Hydrobiologia 2010; 639: 231 243 [CrossRef]
    [Google Scholar]
  19. Komárek J, Mareš J. An update to modern taxonomy (2011) of freshwater planktic heterocytous cyanobacteria. Hydrobiologia 2012; 698: 327 351 [CrossRef]
    [Google Scholar]
  20. Guiry MD, Guiry GM. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 07 August 2020. http://www.algaebase.org/search/genus/detail/?genus_id=43591 .
  21. Hauer T, Komárek J. CyanoDB 2.0 - On-line database of cyanobacterial genera. - World-wide electronic publication 2020; Univ. of South Bohemia & Inst. of Botany AS CR, http://www.cyanodb.cz .
  22. Willis A, Woodhouse JN. Defining cyanobacterial species: diversity and description through genomics. CRC Crit Rev Plant Sci 2020; 39: 101 124 [CrossRef]
    [Google Scholar]
  23. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81 91 [CrossRef] [PubMed]
    [Google Scholar]
  24. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9: 1 8 [CrossRef]
    [Google Scholar]
  25. Gagunashvili AN, Andrésson Ólafur S. Distinctive characters of Nostoc genomes in cyanolichens. BMC Genomics 2018; 19: 434 [CrossRef] [PubMed]
    [Google Scholar]
  26. Kotai J. Instructions for Preparation of Modified Nutrient Solution Z8 for Algae. Publication B-11/69 Oslo: Norwegian Institute for Water Research; 1972
    [Google Scholar]
  27. Heck K, Machineski GS, Alvarenga DO, Vaz MGMV, Varani AdeM et al. Evaluating methods for purifying cyanobacterial cultures by qPCR and high-throughput illumina sequencing. J Microbiol Meth 2016; 129: 55 60 [CrossRef] [PubMed]
    [Google Scholar]
  28. O'Connell J, Schulz-Trieglaff O, Carlson E, Hims MM, Gormley NA et al. NxTrim: optimized trimming of illumina mate pair reads. Bioinformatics 2015; 31: 2035 2037 [CrossRef] [PubMed]
    [Google Scholar]
  29. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.J 2011; 17: 10 12 [CrossRef]
    [Google Scholar]
  30. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19: 455 477 [CrossRef] [PubMed]
    [Google Scholar]
  31. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011; 27: 578 579 [CrossRef] [PubMed]
    [Google Scholar]
  32. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9: e112963 [CrossRef] [PubMed]
    [Google Scholar]
  33. Boetzer M, Pirovano W. Toward almost closed genomes with GapFiller. Genome Biol 2012; 13: R56 [CrossRef] [PubMed]
    [Google Scholar]
  34. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29: 1072 1075 [CrossRef] [PubMed]
    [Google Scholar]
  35. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25: 1043 1055 [CrossRef]
    [Google Scholar]
  36. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32: 1792 1797 [CrossRef] [PubMed]
    [Google Scholar]
  37. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35: 1547 1549 [CrossRef] [PubMed]
    [Google Scholar]
  38. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61: 539 542 [CrossRef] [PubMed]
    [Google Scholar]
  39. Letunic I, Bork P. Interactive tree of life (iTOL) V4: recent updates and new developments. Nucleic Acids Res 2019; 47: W256 W259 [CrossRef] [PubMed]
    [Google Scholar]
  40. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Symposium Series 1999; 41: 95 98
    [Google Scholar]
  41. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003; 31: 3406 3415 [CrossRef]
    [Google Scholar]
  42. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 1312 1313 [CrossRef] [PubMed]
    [Google Scholar]
  43. Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 2011; 27: 1164 1165 [CrossRef] [PubMed]
    [Google Scholar]
  44. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2019; 36: 1925 1927 [CrossRef] [PubMed]
    [Google Scholar]
  45. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66: 1100 1103 [CrossRef] [PubMed]
    [Google Scholar]
  46. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196: 2210 2215 [CrossRef] [PubMed]
    [Google Scholar]
  47. Jeeji-Bai N, Hegewald E, Soeder CJ. Revision and taxonomic analysis of genus Anabaenopsis . Algol Stud 1977; 1977: 25 32
    [Google Scholar]
  48. Kaplan-levy RN, Hadas O, Summers ML, Sukenik A. Dormancy and resistance in harsh environments. Topics Curr Genet 2010; 21: 189 202
    [Google Scholar]
  49. Zhou R, Wolk CP. Identification of an akinete marker gene in Anabaena variabilis . J Bacteriol 2002; 184: 2529 2532 [CrossRef]
    [Google Scholar]
  50. de Souza Santos KR, Rios Jacinavicius F, Leite Sant'Anna C, Santos KRS, Sant’Anna CL. Effects of the pH on growth and morphology of Anabaenopsis elenkinii Miller (Cyanobacteria) isolated from the alkaline shallow lake of the Brazilian Pantanal. Fottea 2011; 11: 119 126 [CrossRef]
    [Google Scholar]
  51. Sili C, Mascalchi C, Ventura S. Evolutionary differentiation of the sister cyanobacterial genera Cyanospira Florenzano, Sili, Pelosi et Vincenzini and Anabaenopsis (Woloszynska) Miller in response to extreme life conditions. Fottea 2011; 11: 107 117 [CrossRef]
    [Google Scholar]
  52. Neilan BA, Saker ML, Fastner J, Törökné A, Burns BP. Phylogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii. Mol Ecol 2003; 12: 133 140 [CrossRef] [PubMed]
    [Google Scholar]
  53. Kabirnataj S, Nematzadeh GA, Talebi AF, Saraf A, Suradkar A et al. Description of novel species of Aliinostoc, Desikacharya and Desmonostoc using a polyphasic approach. Int J Syst Evol Microbiol 2020; 70: 3413 3426 [CrossRef] [PubMed]
    [Google Scholar]
  54. Saraf AG, Dawda HG, Singh P, gen D. Desikacharya gen. nov., a phylogenetically distinct genus of cyanobacteria along with the description of two new species, Desikacharya nostocoides sp. nov. and Desikacharya soli sp. nov., and reclassification of Nostoc thermotolerans to Desikacharya thermotolerans comb. nov. Int J Syst Evol Microbiol 2019; 69: 307 315 [CrossRef] [PubMed]
    [Google Scholar]
  55. Kanesaki Y, Hirose M, Hirose Y, Fujisawa T, Nakamura Y et al. Draft genome sequence of the nitrogen-fixing and hormogonia-inducing Cyanobacterium Nostoc cycadae strain WK-1, isolated from the coralloid roots of Cycas revoluta . Genome Announc 2018; 6: e00021 18 [CrossRef] [PubMed]
    [Google Scholar]
  56. Katoh H, Shiga Y, Nakahira Y, Ohmori M. Isolation and characterization of a drought-tolerant cyanobacterium, Nostoc sp. HK-01. Microb Environ 2003; 18: 82 88 [CrossRef]
    [Google Scholar]
  57. Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K et al. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol 2018; 68: 2386 2392 [CrossRef] [PubMed]
    [Google Scholar]
  58. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187: 6258 6264 [CrossRef] [PubMed]
    [Google Scholar]
  59. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106: 19126 19131 [CrossRef] [PubMed]
    [Google Scholar]
  60. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH et al. A genus definition for bacteria and Archaea based on a standard genome relatedness index. mBio 2020; 11: e02475 19 [CrossRef] [PubMed]
    [Google Scholar]
  61. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36: 996 1004 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004648
Loading
/content/journal/ijsem/10.1099/ijsem.0.004648
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error