1887

Abstract

A Gram-strain-negative, facultatively anaerobic, motile, rod-shaped and flagellated marine bacterium, designated SM6, was isolated from surface seawater collected in Daya Bay (Guangdong, China). Phylogenetic analysis based on 16S rRNA gene sequences, multilocus sequence analysis, phylogenomic analysis of single-copy gene families and whole genome data showed that strain SM6 belonged to the genus . The closest phylogenetic relatives of SM6 were MSSRF60 (97.38 % 16S rRNA gene sequence pairwise similarity), R-40492 (97.27 %), ATCC 35048 (97.21 %) and LC2-047 (97.3 %). Growth of strain SM6 occurred at 10–45 °C (optimum 30 °C), at pH 6.0–9.0 (optimum 6.0) and in the presence of 0–10 % (w/v) NaCl (optimum 3–8 %). The predominant fatty acids (>10 %) were summed feature 3 (C 7 or/and C 6), C and summed feature 8 (C 7 or/and C 6). The DNA G+C content of the assembled genomic sequences was 47.37 % for strain SM6. Average nucleotide identity values between SM6 and its reference species were lower than the threshold for species delineation (95–96 %); DNA–DNA hybridization further showed that the strains shared less than 70 % similarity. On the basis of evidence from the present polyphasic study, strain SM6 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SM6 (=KCTC 82076=MCCC 1K04327 ).

Funding
This study was supported by the:
  • Scientific Research Foundation of Third Institute of Oceanography, MNR (Award 2019003)
    • Principle Award Recipient: JiaguangXiao
  • Scientific Research Foundation of Third Institute of Oceanography, MNR (Award 2020005)
    • Principle Award Recipient: XiaoleiWang
  • National Key Research and Development Program of China (Award 2017YFA0604902)
    • Principle Award Recipient: WentaoNiu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004647
2021-01-22
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/2/ijsem004647.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004647&mimeType=html&fmt=ahah

References

  1. Urbanczyk H, Ast JC, Higgins MJ, Carson J, Dunlap PV. Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis references comb. nov. Int J Syst Evol Microbiol 2007; 57:2823–2829 [View Article][PubMed]
    [Google Scholar]
  2. Thompson FL, Hoste B, Thompson CC, Goris J, Gomez-Gil B et al. Enterovibrio norvegicus gen. nov., sp. nov., isolated from the gut of turbot (Scophthalmus maximus) larvae: a new member of the family Vibrionaceae. Int J Syst Evol Microbiol 2002; 52:2015–2022 [View Article][PubMed]
    [Google Scholar]
  3. Thompson FL, Hoste B, Vandemeulebroecke K, Swings J. Reclassification of Vibrio hollisae as Grimontia hollisae gen. nov., comb. nov. Int J Syst Evol Microbiol 2003; 53:1615–1617 [View Article][PubMed]
    [Google Scholar]
  4. Huang Z, Dong C, Shao Z. Paraphotobacterium marinum gen. nov., sp. nov., a member of the family Vibrionaceae, isolated from surface seawater. Int J Syst Evol Microbiol 2016; 66:3050–3056 [View Article][PubMed]
    [Google Scholar]
  5. Baumann P, Baumann L. Genus II. Photobacterium Beijerinck 1889, 401AL. In Krieg NR, Holt JG. (editors) Bergey’s 366 Manual of Systematic Bacteriology 1 Baltimore: Williams & Wilkins; 1984 pp 539–545
    [Google Scholar]
  6. Mellado E, Moore ER, Nieto JJ, Ventosa A. Analysis of 16S rRNA gene sequences of Vibrio costicola strains: description of Salinivibrio costicola gen. nov., comb. nov. Int J Syst Bacteriol 1996; 46:817–821 [View Article][PubMed]
    [Google Scholar]
  7. Amin AKMR, Tanaka M, Al-Saari N, Feng G, Mino S et al. Thaumasiovibrio occultus gen. nov. sp. nov. and Thaumasiovibrio subtropicus sp. nov. within the family Vibrionaceae, isolated from coral reef seawater off Ishigaki Island, Japan. Syst Appl Microbiol 2017; 40:290–296 [View Article][PubMed]
    [Google Scholar]
  8. Farmer JJ, Michael JJ. Genus I. Vibrio Pacini 1854, 411AL. In Garrity GM. editor Bergey’s Manual of Systematic Bacteriology, 2nd ed, vol. 2, The Proteobacteria, Part B New York: Springer Press; 2005 pp 494–546
    [Google Scholar]
  9. Zhang X, Lin H, Wang X, Austin B, Brian A. Significance of Vibrio species in the marine organic carbon cycle—A review. Sci China Earth Sci 2018; 61:1357–1368 [View Article]
    [Google Scholar]
  10. Wang X, Liu J, Li B, Liang J, Sun H et al. Spatial heterogeneity of Vibrio spp. in sediments of Chinese marginal seas. Appl Environ Microbiol 2019; 85:e03064–18 [View Article][PubMed]
    [Google Scholar]
  11. Ben-Haim Y, Thompson FL, Thompson CC, Cnockaert MC, Hoste B et al. Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int J Syst Evol Microbiol 2003; 53:309–315 [View Article][PubMed]
    [Google Scholar]
  12. Linkous DA, Oliver JD. Pathogenesis of Vibrio vulnificus. FEMS Microbiol Lett 1999; 174:207–214 [View Article][PubMed]
    [Google Scholar]
  13. Colwell RR. Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol 1970; 104:410–433 [View Article][PubMed]
    [Google Scholar]
  14. Gomez-Gil B, Tron-Mayen L, Roque A, Turnbull JF, Inglis V et al. Species of Vibrio isolated from hepatopancreas, haemolymph and digestive tract of a population of healthy juvenile Penaeus vannamei. Aquaculture 1998; 163:1–9 [View Article]
    [Google Scholar]
  15. Poli A, Romano I, Mastascusa V, Buono L, Orlando P et al. Vibrio coralliirubri sp. nov., a new species isolated from mucus of red coral (Corallium rubrum) collected at Procida island, Italy. Antonie van Leeuwenhoek 2018; 111:1105–1115 [View Article][PubMed]
    [Google Scholar]
  16. Huq A, Small EB, West PA, Huq MI, Rahman R et al. Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 1983; 45:275–283 [View Article][PubMed]
    [Google Scholar]
  17. Li B, Li Y, Liu R, Xue C, Zhu X et al. Vibrio ouci sp. nov. and Vibrio aquaticus sp. nov., two marine bacteria isolated from the East China Sea. Int J Syst Evol Microbiol 2020; 70:172–179 [View Article][PubMed]
    [Google Scholar]
  18. Chen T, Yu K, Li S, Price GJ, Shi Q et al. Heavy metal pollution recorded in Porites corals from Daya Bay, Northern South China Sea. Mar Environ Res 2010; 70:318–326 [View Article][PubMed]
    [Google Scholar]
  19. Chen T, Yu K, Shi Q, Li S, Price GJ et al. Twenty-five years of change in scleractinian coral communities of Daya Bay (northern South China Sea) and its response to the 2008 AD extreme cold climate event. Science Bulletin 2009; 54:2107–2117 [View Article]
    [Google Scholar]
  20. Wang X, Liu J, Liang J, Sun H, Zhang Xiao‐Hua, Zhang X-H. Spatiotemporal dynamics of the total and active Vibrio spp. populations throughout the Changjiang estuary in China. Environ Microbiol 2020; 22:4438–4455 [View Article]
    [Google Scholar]
  21. Rameshkumar N, Gomez-Gil B, Spröer C, Lang E, Dinesh Kumar N, Kumar ND et al. Vibrio plantisponsor sp. nov., a diazotrophic bacterium isolated from a mangrove associated wild rice (Porteresia coarctata Tateoka). Syst Appl Microbiol 2011; 34:487–493 [View Article][PubMed]
    [Google Scholar]
  22. Chimetto LA, Cleenwerck I, Moreira APB, Brocchi M, Willems A et al. Vibrio variabilis sp. nov. and Vibrio maritimus sp. nov., isolated from Palythoa caribaeorum. Int J Syst Evol Microbiol 2011; 61:3009–3015 [View Article][PubMed]
    [Google Scholar]
  23. Moore ERB, Arnscheidt A, Krüger A, Strömpl C, Mau M. Simplified protocols for the preparation of genomic DNA from bacterial cultures. In Molecular Microbial Ecology Manual 1999; 1:1–15
    [Google Scholar]
  24. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article][PubMed]
    [Google Scholar]
  25. Zhang Z, Yu T, Xu T, Zhang X-H. Aquimarina pacifica sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2014; 64:1991–1997 [View Article][PubMed]
    [Google Scholar]
  26. Yoon SH, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  27. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  28. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. mega X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  29. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  30. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  31. Johnson LS, Eddy SR, Portugaly E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics 2010; 11:431 [View Article][PubMed]
    [Google Scholar]
  32. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 2016; 44:D279–D285 [View Article][PubMed]
    [Google Scholar]
  33. Lin H, Yu M, Wang X, Zhang X-H. Comparative genomic analysis reveals the evolution and environmental adaptation strategies of vibrios. BMC Genomics 2018; 19:135 [View Article][PubMed]
    [Google Scholar]
  34. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013; 79:7696–7701 [View Article][PubMed]
    [Google Scholar]
  35. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article][PubMed]
    [Google Scholar]
  36. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article][PubMed]
    [Google Scholar]
  37. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article][PubMed]
    [Google Scholar]
  38. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article][PubMed]
    [Google Scholar]
  39. Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, SV L. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2017; 35:
    [Google Scholar]
  40. Guindon S, Dufayard J, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article][PubMed]
    [Google Scholar]
  41. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  42. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000; 28:33–36 [View Article][PubMed]
    [Google Scholar]
  43. Beveridge TJ, Lawrence JR, Murray RG. Sampling and staining for light microscopy. Methods for General and Molecular Microbiology, Third Edition. American Society of Microbiology; 2007 pp 19–33
    [Google Scholar]
  44. Tindall BJ, Sikorski J, Smibert RM, Krieg NR et al. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp 330–393
    [Google Scholar]
  45. Yoon JH, Lee KC, Kho YH, Kang KH, Kim CJ et al. Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2002; 52:123–130 [View Article][PubMed]
    [Google Scholar]
  46. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News Lett 1990; 20:1–6
    [Google Scholar]
  47. Li Y, Liang J, Liu R, Xue C-X, Zhou S et al. Vibrio sinensis sp. nov. and Vibrio viridaestus sp. nov., two marine bacteria isolated from the East China Sea. Int J Syst Evol Microbiol 2020; 70:889–896 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004647
Loading
/content/journal/ijsem/10.1099/ijsem.0.004647
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error