1887

Abstract

A novel actinomycete, designated strain HC44, was isolated from a soil sample collected from Hacibektaş, Turkey, and characterized using a polyphasic approach. The strain had morphological characteristics and chemotaxonomic properties identical to those of members of the genus . Phylogenetic analyses based on 16S rRNA gene sequence comparisons revealed that HC44 clustered with members of the genus and the highest 16S rRNA gene sequence similarity values were obtained with NBRC 13094 (97.6 %) and TRM 46509 (96.9 %). Multi-locus sequence analysis (MLSA) based on five housekeeping genes (, , , and ) showed that the MLSA evolutionary distance value was 0.043 between strain HC44 and NBRC 13094. Whole-cell hydrolysates contained -diaminopimelic acid, glucose, mannose and ribose. The predominant menaquinones were MK-9(H) and MK-9(H). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The DNA G+C content of the draft genome sequence, consisting of 11.2 Mbp, was 69.8 mol%. On the basis of polyphasic taxonomic evidence, strain HC44 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HC44 (=DSM 106874=KCTC 39872).

Funding
This study was supported by the:
  • Türkiye Bilimsel ve Teknolojik Araştirma Kurumu (Award 115Z792)
    • Principle Award Recipient: KamilIsik
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004639
2021-01-20
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/2/ijsem004639.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004639&mimeType=html&fmt=ahah

References

  1. Waksman SA, Henrici AT. The nomenclature and classification of the actinomycetes. J Bacteriol 1943; 46:337341 [View Article][PubMed]
    [Google Scholar]
  2. Kroppenstedt RM, Stackebrandt E, Goodfellow M. Taxonomic revision of the actinomycete genera Actinomadura and Microtetraspora. Syst Appl Microbiol 1990; 13:148–160 [View Article]
    [Google Scholar]
  3. Kämpfer P, Genus I. Streptomyces Waksman and Henrici 1943, 339AL emend. Witt and Stackebrandt 1990, 370 emend. Wellington, Stackebrandt, Sanders, Wolstrup and Jorgensen 1992, 159. In Goodfellow M, Kampfer P, Busse HJ, Trujillo ME, Suzuki K et al. (editors) Bergey’s Manual of Systematic Bacteriology 5 2012 pp 1455–1467
    [Google Scholar]
  4. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [View Article]
    [Google Scholar]
  5. Bekiesch P, Basitta P, Apel AK. Challenges in the heterologous production of antibiotics in Streptomyces. Arch Pharm 2016; 349:594–601 [View Article][PubMed]
    [Google Scholar]
  6. Komaki H, Ichikawa N, Oguchi A, Hamada M, Tamura T et al. Genome analysis-based reclassification of Streptomyces endus and Streptomyces sporocinereus as later heterotypic synonyms of Streptomyces hygroscopicus subsp. hygroscopicus. Int J Syst Evol Microbiol 2017; 67:343–345 [View Article][PubMed]
    [Google Scholar]
  7. Komaki H, Tamura T. Reclassification of Streptomyces rimosus subsp. paromomycinus as Streptomyces paromomycinus sp. nov. Int J Syst Evol Microbiol 2019; 69:2577–2583 [View Article][PubMed]
    [Google Scholar]
  8. Madhaiyan M, Saravanan VS, See-Too W-S. Genome-based analyses reveal the presence of 12 heterotypic synonyms in the genus Streptomyces and emended descriptions of Streptomyces bottropensis, Streptomyces celluloflavus, Streptomyces fulvissimus, Streptomyces glaucescens, Streptomyces murinus, and Streptomyces variegatus. Int J Syst Evol Microbiol 2020; 70:3924–3929 [View Article][PubMed]
    [Google Scholar]
  9. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:1–119 [View Article]
    [Google Scholar]
  10. Saygin H, Ay H, Guven K, Cetin D, Sahin N. Streptomyces cahuitamycinicus sp. nov., isolated from desert soil and reclassification of Streptomyces galilaeus as a later heterotypic synonym of Streptomyces bobili. Int J Syst Evol Microbiol 2020; 70:2750–2759 [View Article][PubMed]
    [Google Scholar]
  11. Weyland H. Actinomycetes in North Sea and Atlantic Ocean sediments. Nature 1969; 223:858 [View Article][PubMed]
    [Google Scholar]
  12. Bowers CS, Hucker GJ. The composition of media for the bacteriological analysis of milk. New York State Agr Exp Sta Tech Bui 1935; 228:
    [Google Scholar]
  13. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  14. Lane D. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York, USA: Wiley; 1991 pp 115–175
    [Google Scholar]
  15. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  16. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. clustal W and clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  17. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. mega X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  22. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. editor Mammalian Protein Metabolism New York: Academic Press; 1969 pp 21–132
    [Google Scholar]
  23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  24. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article][PubMed]
    [Google Scholar]
  25. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  26. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article][PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article][PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  29. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  30. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  31. Stackebrandt E, Ebers J. Taxonomic parameter revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  32. Rong X, Huang Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol 2012; 35:7–18 [View Article][PubMed]
    [Google Scholar]
  33. Kodani S, Bicz J, Song L, Deeth RJ, Ohnishi-Kameyama M et al. Structure and biosynthesis of scabichelin, a novel tris-hydroxamate siderophore produced by the plant pathogen Streptomyces scabies 87.22. Org Biomol Chem 2013; 11:4686–4694 [View Article][PubMed]
    [Google Scholar]
  34. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  35. Lechevalier HA, Lechevalier MP. A critical evaluation of the genera of aerobic actinomycetes. In Prauser H. editor The Actinomycetes Jena: Gustav Fischer; 1970 pp 393–405
    [Google Scholar]
  36. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article][PubMed]
    [Google Scholar]
  37. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  38. Collins M. Isoprenoid quinone analysis in bacterial classification and identification. In Goodfellow DEM. editor Chemical Methods in Bacterial Systematics Academic Press; 1985 pp 267–285
    [Google Scholar]
  39. Kroppenstedt R. nFatty acid and menaquinon analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Elsevier Science & Technology Books; 1985 pp 173–199
    [Google Scholar]
  40. Kämpfer P, Kroppenstedt RM, Peter Kämpfer RMK. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  41. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:1–6
    [Google Scholar]
  42. Magee CM, Rodeheaver G, Edgerton MT, Edlich RF. A more reliable gram staining technic for diagnosis of surgical infections. Am J Surg 1975; 130:341–346 [View Article][PubMed]
    [Google Scholar]
  43. Waksman SA. The Actinomycetes. a Summary of Current Knowledge New York: Ronald Press; 1967
    [Google Scholar]
  44. Waksman SA. The Actinomycetes. vol. II. Classification, Identification and Descriptions of Genera and Species Baltimore: Williams & Wilkins; 1961
    [Google Scholar]
  45. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57:141–145 [View Article][PubMed]
    [Google Scholar]
  46. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129:1743–1813 [View Article][PubMed]
    [Google Scholar]
  47. Nash P, Krent MM. Culture media. In Ballows AHW, Herrmann KL, Isenberg HD, Shadomy HJ. (editors) Manual of Clinical Microbiology, 5th ed. Washington, DC: American Society for Microbiology; 1991 pp 1268–1270
    [Google Scholar]
  48. Goodfellow M. Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol 1971; 69:33–80 [View Article][PubMed]
    [Google Scholar]
  49. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  50. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article][PubMed]
    [Google Scholar]
  51. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
  52. Jiang H, Han L, Li J, Yu M, Zhao J et al. Streptomyces montanus sp. nov., a novel actinomycete isolated from soil. Int J Syst Evol Microbiol 2020; 70:3226–3233 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004639
Loading
/content/journal/ijsem/10.1099/ijsem.0.004639
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error