1887

Abstract

Two Gram-stain-positive, facultatively aerobic, non-motile and rod- to coccoid-shaped bacterial strains, 23H37-10 and 4HC-13, were isolated from the faeces of greater white-fronted geese () at Poyang Lake, Jiangxi Province, PR China. Optimal growth was observed at 35–37 °C, pH 7.0–8.0 and with 0.5–1.5 % (w/v) NaCl. The 16S rRNA gene sequences of strains 23H37-10 and 4HC-13 were identical. Phylogenetic and phylogenomic analyses indicated that strains 23H37-10 and 4HC-13 formed an independent cluster within the genus and showed 98.8, 97.4, 97.4 and 97.2 % 16S rRNA gene sequence similarity to LMM 1652, DSM 7109, DSM 44353 and NCTC 11913, respectively. Cells contained C 9, C and C as the major cellular fatty acids and MK-9 (H) as the predominant respiratory quinone. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidyl inositol mannosides, two unidentified phospholipids, four unidentified glycolipids and one unidentified lipid. Strain 23H37-10 contained mycolic acids, with -diaminopimelic acid and arabinose as the major whole-cell hydrolysates. The genome G+C content of strains 23H37-10 and 4HC-13 was 55.2 mol%. The digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strains 23H37-10 and 4HC-13 were 94.4 and 99.6 %, respectively. Strains 23H37-10 and 4HC-13 had dDDH and ANI values of less than 70 and 96 % with all available genomes of the genus , respectively. The differential genotypic inferences, together with phenotypic and biochemical characteristics, suggested that strains 23H37-10 and 4HC-13 represent a novel species within the genus , for which the name sp. nov. is proposed. The type strain is 23H37-10 (=GDMCC 1.1737=KACC 21672).

Funding
This study was supported by the:
  • Independent Research Project of State Key Laboratory of Infectious Disease Prevention and Control (Award 2019SKLID311)
    • Principle Award Recipient: ShengenChen
  • the Major Science Project of Jiangxi Province (Award 2020BBG71010)
    • Principle Award Recipient: ChenShengen
  • the National Science and Technology Major Projects (Award 2018ZX10201001-006)
    • Principle Award Recipient: XiongYanwen
  • the National Science and Technology Major Project (Award 2018ZX10301407-002)
    • Principle Award Recipient: XiongYanwen
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004637
2021-01-11
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/2/ijsem004637.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004637&mimeType=html&fmt=ahah

References

  1. Lehmann KB. Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen bakteriologischen diagnostik: Text JF Lehmann; 1899
    [Google Scholar]
  2. Bernard KA, Funke G. Corynebacterium. Bergey’s Manual of Systematics of Archaea and Bacteria 2015 pp 1–70
    [Google Scholar]
  3. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article][PubMed]
    [Google Scholar]
  4. Collins MD, Goodfellow M, Minnikin DE. A survey of the structures of mycolic acids in Corynebacterium and related taxa. J Gen Microbiol 1982; 128:129–149 [View Article][PubMed]
    [Google Scholar]
  5. Buczek AM, Buczek W, Buczek A, Bartosik K. The potential role of migratory birds in the rapid spread of ticks and tick-borne pathogens in the changing climatic and environmental conditions in Europe. Int J Environ Res Public Health 2020; 17:2117 23 03 2020 [View Article][PubMed]
    [Google Scholar]
  6. Huang Y, Wang X, Yang J, Lu S, Lai X-H et al. Nocardioides yefusunii sp. nov., isolated from Equus kiang (Tibetan wild ass) faeces. Int J Syst Evol Microbiol 2019; 69:3629–3635 [View Article][PubMed]
    [Google Scholar]
  7. Bai X, Xiong Y, Lu S, Jin D, Lai X et al. Streptococcus pantholopis sp. nov., isolated from faeces of the Tibetan antelope (Pantholops hodgsonii). Int J Syst Evol Microbiol 2016; 66:3281–3286 [View Article][PubMed]
    [Google Scholar]
  8. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  9. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  10. Zhang S, Wang X, Yang J, Lu S, Lai X-H et al. Luteimonas yindakuii sp. nov. isolated from the leaves of Dandelion (Taraxacum officinale) on the Qinghai-Tibetan Plateau. Int J Syst Evol Microbiol 2020; 70:1007–1014 [View Article][PubMed]
    [Google Scholar]
  11. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of prokaryotic names with standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article][PubMed]
    [Google Scholar]
  12. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  13. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  14. Souvorov A, Agarwala R, Lipman DJ. SKESA: strategic k-mer extension for scrupulous assemblies. Genome Biol 2018; 19:153 [View Article][PubMed]
    [Google Scholar]
  15. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  16. Claverías F, Gonzales-Siles L, Salvà-Serra F, Inganäs E, Molin K et al. Corynebacterium alimapuense sp. nov., an obligate marine actinomycete isolated from sediment of Valparaíso bay, Chile. Int J Syst Evol Microbiol 2019; 69:783–790 [View Article][PubMed]
    [Google Scholar]
  17. Jani K, Khare K, Senik S, Karodi P, Vemuluri VR et al. Corynebacterium godavarianum sp. nov., isolated from the Godavari river, India. Int J Syst Evol Microbiol 2018; 68:241–247 [View Article][PubMed]
    [Google Scholar]
  18. Nantapong N, Matsutani M, Kanchanasin P, Kataoka N, Paisrisan P et al. Corynebacterium suranareeae sp. nov., a glutamate producing bacterium isolated from soil and its complete genome-based analysis. Int J Syst Evol Microbiol 2020; 70:1903–1911 [View Article][PubMed]
    [Google Scholar]
  19. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article][PubMed]
    [Google Scholar]
  20. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28:3150–3152 [View Article][PubMed]
    [Google Scholar]
  21. Rozewicki J, Li S, Amada KM, Standley DM, Katoh K. MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Res 2019; 47:W5–W10 [View Article][PubMed]
    [Google Scholar]
  22. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article][PubMed]
    [Google Scholar]
  23. Letunic I, Bork P. Interactive tree of life (iTOL) V4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article][PubMed]
    [Google Scholar]
  24. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  26. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities; 2007; 5781–91
  27. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Analytical Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  28. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article][PubMed]
    [Google Scholar]
  29. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016; 4:e1900v1901
    [Google Scholar]
  30. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed]
    [Google Scholar]
  31. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  32. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  33. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  34. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  35. Frischmann A, Knoll A, Hilbert F, Zasada AA, Kämpfer P et al. Corynebacterium epidermidicanis sp. nov., isolated from skin of a dog. Int J Syst Evol Microbiol 2012; 62:2194–2200 [View Article][PubMed]
    [Google Scholar]
  36. Zhu W, Yang J, Lu S, Lai X-H, Jin D et al. Fudania jinshanensis gen. nov., sp. nov., isolated from faeces of the Tibetan antelope (Pantholops hodgsonii) in China. Int J Syst Evol Microbiol 2019; 69:2942–2947 [View Article][PubMed]
    [Google Scholar]
  37. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496 [View Article][PubMed]
    [Google Scholar]
  38. Ballas P, Rückert C, Wagener K, Drillich M, Kämpfer P et al. Corynebacterium urogenitale sp. nov. isolated from the genital tract of a cow. Int J Syst Evol Microbiol 2020; 70:3625–3632 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004637
Loading
/content/journal/ijsem/10.1099/ijsem.0.004637
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error