1887

Abstract

An aerobic, rod-shaped, Gram-stain-positive, actinobacterial strain, designated 1.0914, was isolated from a stalactite sample collected from a cave located in Guizhou Province, southwest PR China. Based on 16S rRNA gene sequence analysis, strain 1.0914 shared highest similarities values with CGMCC 4.7388 (97.7 %), CCTCC AB 2017083 (97.5 %) and CCTCC AB 2018079 (97.3 %) and values lower than 97.0 % to other members of the genus . Phylogenetic trees based on 16S rRNA gene sequences indicated that strain 1.0914 formed an isolated branch with CGMCC 4.7388, CCTCC AB 2017083 and CCTCC AB 2018079. The polar lipids contained phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol and one unidentified phospholipid in the cellular membrane. The major fatty acids were identified as iso-C, C ω9, C ω8 and C. The predominant respiratory quinone was MK-8(H) and -diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan. The genomic DNA G+C content was 71.1 mol%. The orthologous average nucleotide identiy values between CGMCC 4.7388, CCTCC AB 2017083, CCTCC 2018079 and strain 1.0914 were 82.3, 81.7 and 81.9 % respectively. DNA–DNA hybridization values between CGMCC 4.7388, CCTCC AB 2017083, CCTCC 2018079 and strain 1.0914 were 25.2, 24.6 and 24.5 % respectively. The phylogenetic, phenotypic and chemotaxonomic data supported the classification of strain 1.0914 as representing a new species of , for which the name sp. nov. is proposed. The type strain is 1.0914 (=CCTCC AB 2018266=KCTC 49243).

Funding
This study was supported by the:
  • the Department of Science and Technology of Yunnan Province (Award 202001BB050072)
    • Principle Award Recipient: He MoMing
  • the Department of Science and Technology of Yunnan Province (Award 2019ZG00901)
    • Principle Award Recipient: He MoMing
  • the Department of Science and Technology of Yunnan Province (Award 2018BC001)
    • Principle Award Recipient: MingHe Mo
  • China Tobacco Yunnan Industrial Co. Ltd. (Award 2019530000241018)
    • Principle Award Recipient: MingHe Mo
  • China Tobacco Yunnan Industrial Co. Ltd. (Award 2018530000241019)
    • Principle Award Recipient: MingHe Mo
  • the National Natural Science Foundation of China (Award 31660023)
    • Principle Award Recipient: He MoMing
  • the National Natural Science Foundation of China (Award 31870091)
    • Principle Award Recipient: MingHe Mo
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004636
2021-01-20
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/2/ijsem004636.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004636&mimeType=html&fmt=ahah

References

  1. Prauser H. Nocardioides, a new genus of the order Actinomycetates. Int J Syst Bacteriol 1976; 26:58–65 [View Article]
    [Google Scholar]
  2. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479–491 [View Article]
    [Google Scholar]
  3. Roh SG, Lee C, Kim M-K, Kang H-J, Kim YS et al. Nocardioides euryhalodurans sp. nov., Nocardioides seonyuensis sp. nov. and Nocardioides eburneiflavus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2020; 70:2682–2689 [View Article][PubMed]
    [Google Scholar]
  4. Lu L, Cao M, Wang D, Yuan K, Zhuang W et al. Nocardioides immobilis sp. nov., isolated from iron mine soil. Int J Syst Evol Microbiol 2017; 67:5230–5234 [View Article][PubMed]
    [Google Scholar]
  5. Yan Z-F, Lin P, Li C-T, Kook M, Yi T-H. Nocardioides pelophilus sp. nov., isolated from freshwater mud. Int J Syst Evol Microbiol 2018; 68:1942–1948 [View Article][PubMed]
    [Google Scholar]
  6. Cho Y, Jang GI, Cho BC. Nocardioides marinquilinus sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2013; 63:2594–2599 [View Article][PubMed]
    [Google Scholar]
  7. Lee DW, Hyun C-G, Lee SD. Nocardioides marinisabuli sp. nov., a novel actinobacterium isolated from beach sand. Int J Syst Evol Microbiol 2007; 57:2960–2963 [View Article][PubMed]
    [Google Scholar]
  8. Yoon J-H, Kang S-J, Park S, Kim W, Oh T-K. Nocardioides caeni sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 2009; 59:2794–2797 [View Article][PubMed]
    [Google Scholar]
  9. Deng S, Chang X, Zhang Y, Ren L, Jiang F et al. Nocardioides antarcticus sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2015; 65:2615–2621 [View Article][PubMed]
    [Google Scholar]
  10. Yi H, Chun J. Nocardioides aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2004; 54:2151–2154 [View Article][PubMed]
    [Google Scholar]
  11. Kämpfer P, Glaeser SP, McInroy JA, Busse H-J. Nocardioides zeicaulis sp. nov., an endophyte actinobacterium of maize. Int J Syst Evol Microbiol 2016; 66:1869–1874 [View Article][PubMed]
    [Google Scholar]
  12. Han J-H, Kim T-S, Joung Y, Kim MN, Shin K-S et al. Nocardioides endophyticus sp. nov. and Nocardioides conyzicola sp. nov., isolated from herbaceous plant roots. Int J Syst Evol Microbiol 2013; 63:4730–4734 [View Article][PubMed]
    [Google Scholar]
  13. Tuo L, Dong Y-P, Habden X, Liu J-M, Guo L et al. Nocardioides deserti sp. nov., an actinobacterium isolated from desert soil. Int J Syst Evol Microbiol 2015; 65:1604–1610 [View Article][PubMed]
    [Google Scholar]
  14. Zhang L-Y, Ming H, Zhao Z-L, Ji W-L, Salam N et al. Nocardioides allogilvus sp. nov., a novel actinobacterium isolated from a karst cave. Int J Syst Evol Microbiol 2018; 68:2485–2490 [View Article][PubMed]
    [Google Scholar]
  15. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985; 49:1–7 [View Article][PubMed]
    [Google Scholar]
  16. Gregersen T. Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978; 5:123–127 [View Article]
    [Google Scholar]
  17. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  18. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  19. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46:234–239 [View Article][PubMed]
    [Google Scholar]
  20. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  21. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  22. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newwark, DE: MIDI Inc; 1990
    [Google Scholar]
  23. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial Systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  24. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  25. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  28. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  29. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  30. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  31. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  32. Xi L, Zhang Z, Qiao N, Zhang Y, Li J et al. Complete genome sequence of the novel thermophilic polyhydroxyalkanoates producer Aneurinibacillus sp. XH2 isolated from Gudao oilfield in China. J Biotechnol 2016; 227:54–55 [View Article][PubMed]
    [Google Scholar]
  33. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  35. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler OK. International Committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacterio 1987; l37:463–464
    [Google Scholar]
  36. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004636
Loading
/content/journal/ijsem/10.1099/ijsem.0.004636
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error