sp. nov. and sp. nov., two novel species isolated from the honeycombs of Free

Abstract

As part of a study investigating the microbiome of bee hives and honey, two novel strains (TMW 2.1880 and TMW 2.1889) of acetic acid bacteria were isolated and subsequently taxonomically characterized by a polyphasic approach, which revealed that they cannot be assigned to known species. The isolates are Gram-stain-negative, aerobic, pellicle-forming, catalase-positive and oxidase-negative. Cells of TMW 2.1880 are non-motile, thin/short rods, and cells of TMW 2.1889 are motile and occur as rods and long filaments. Morphological, physiological and phylogenetic analyses revealed a distinct lineage within the genus . Strain TMW 2.1880 is most closely related to the type strain of with a 16S rRNA gene sequence similarity of 99.5 %, and ANIb and DDH values of 94.16 and 56.3 %, respectively. The genome of TMW 2.1880 has a size of 1.98 Mb and a G+C content of 55.3 mol%. Strain TMW 2.1889 is most closely related to the type strain of with a 16S rRNA gene sequence similarity of 99.5 %, and ANIb and DDH values of 85.12 and 29.5 %, respectively. The genome of TMW 2.1889 has a size of 2.07 Mb and a G+C content of 60.4 mol%. Ubiquinone analysis revealed that both strains contained Q-10 as the main respiratory quinone. Major fatty acids for both strains were C, C cyclo 8 and summed feature 8, respectively, and additionally C 2-OH only for TMW 2.1880 and C only for TMW 2.1889. Based on polyphasic evidence, the two isolates from honeycombs of represent two novel species of the genus , for which the names sp. nov and sp. nov. are proposed. The designated respective type strains are TMW 2.1880 (=LMG 31882=CECT 30114) and TMW 2.1889 (=LMG 31883=CECT 30113).

Funding
This study was supported by the:
  • Bundesanstalt für Landwirtschaft und Ernährung (Award 2816IP001)
    • Principle Award Recipient: MaikHilgarth
  • Bundesministerium für Wirtschaft und Energie (Award 19180 N)
    • Principle Award Recipient: MaikHilgarth
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004633
2021-01-13
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/2/ijsem004633.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004633&mimeType=html&fmt=ahah

References

  1. Yamada Y. Systematics of Acetic Acid Bacteria Acetic Acid Bacteria: Springer; 2016 pp 1–50
    [Google Scholar]
  2. De Vuyst L, Camu N, De Winter T, Vandemeulebroecke K, Van de Perre V, Perre Vde V et al. Validation of the (GTG)(5)-rep-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. Int J Food Microbiol 2008; 125:79–90 [View Article][PubMed]
    [Google Scholar]
  3. Kersters K, Lisdiyanti P, Komagata K, Swings J. The family Acetobacteraceae: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. The prokaryotes 2006; 5:163–200
    [Google Scholar]
  4. Yamada Y, Yukphan P. Genera and species in acetic acid bacteria. Int J Food Microbiol 2008; 125:15–24 [View Article][PubMed]
    [Google Scholar]
  5. Jakob F, Quintero Y, Musacchio A, Estrada-de Los Santos P, Hernández L et al. Acetic acid bacteria encode two levansucrase types of different ecological relationship. Environ Microbiol 2019; 21:4151–4165 [View Article][PubMed]
    [Google Scholar]
  6. Gulitz A, Stadie J, Wenning M, Ehrmann MA, Vogel RF. The microbial diversity of water kefir. Int J Food Microbiol 2011; 151:284–288 [View Article][PubMed]
    [Google Scholar]
  7. De Roos J, De Vuyst L. Acetic acid bacteria in fermented foods and beverages. Curr Opin Biotechnol 2018; 49:115–119 [View Article][PubMed]
    [Google Scholar]
  8. Raspor P, Goranovič D. Biotechnological applications of acetic acid bacteria. Crit Rev Biotechnol 2008; 28:101–124 [View Article][PubMed]
    [Google Scholar]
  9. Crotti E, Rizzi A, Chouaia B, Ricci I, Favia G et al. Acetic acid bacteria, newly emerging symbionts of insects. Appl Environ Microbiol 2010; 76:6963–6970 [View Article][PubMed]
    [Google Scholar]
  10. Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 2011; 20:619–628 [View Article][PubMed]
    [Google Scholar]
  11. Cariveau DP, Elijah Powell J, Koch H, Winfree R, Moran NA. Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). Isme J 2014; 8:2369–2379 [View Article][PubMed]
    [Google Scholar]
  12. Li L, Praet J, Borremans W, Nunes OC, Manaia CM et al. Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop. Int J Syst Evol Microbiol 2015; 65:267–273 [View Article][PubMed]
    [Google Scholar]
  13. Yun J-H, Lee J-Y, Hyun D-W, Jung M-J, Bae J-W. Bombella apis sp. nov., an acetic acid bacterium isolated from the midgut of a honey bee. Int J Syst Evol Microbiol 2017; 67:2184–2188 [View Article][PubMed]
    [Google Scholar]
  14. Corby-Harris V, Snyder L, Meador CAD, Naldo R, Mott B et al. Parasaccharibacter apiumApium, gen. nov., sp. nov., improves honey bee (Hymenoptera: Apidae) resistance to Nosema. J Econ Entomol 2016; 109:537–543 [View Article][PubMed]
    [Google Scholar]
  15. Corby-Harris V, Snyder LA, Schwan MR, Maes P, McFrederick QS et al. Origin and effect of alpha 2.2 Acetobacteraceae in honey bee larvae and description of Parasaccharibacter apiumApium gen. nov., sp. nov. Appl Environ Microbiol 2014; 80:7460–7472 [View Article][PubMed]
    [Google Scholar]
  16. Bonilla-Rosso G, Paredes JC, Das S, Ellegaard KM, Emery O. Acetobacteraceae in the honey bee gut comprise two distant clades with diverging metabolism and ecological niches. bioRxiv 2019; 861260:
    [Google Scholar]
  17. Babendreier D, Joller D, Romeis J, Bigler F, Widmer F. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol Ecol 2007; 59:600–610 [View Article][PubMed]
    [Google Scholar]
  18. Anderson KE, Sheehan TH, Mott BM, Maes P, Snyder L et al. Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS One 2013; 8:e83125 [View Article][PubMed]
    [Google Scholar]
  19. Koch H, Abrol DP, Li J, Schmid-Hempel P. Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Mol Ecol 2013; 22:2028–2044 [View Article][PubMed]
    [Google Scholar]
  20. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  21. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  26. Huptas C, Scherer S, Wenning M. Optimized illumina PCR-free library preparation for bacterial whole genome sequencing and analysis of factors influencing de novo assembly. BMC Res Notes 2016; 9:269 [View Article][PubMed]
    [Google Scholar]
  27. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article][PubMed]
    [Google Scholar]
  28. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H, S-M H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article][PubMed]
    [Google Scholar]
  29. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  30. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  31. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  33. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Brenner D, Grimont P et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  34. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  35. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article][PubMed]
    [Google Scholar]
  36. Kuykendall LD, Roy MA, O'NEILL JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  37. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990a; 13:128–130 [View Article]
    [Google Scholar]
  38. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990b; 66:199–202 [View Article]
    [Google Scholar]
  39. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955; 1:138–146
    [Google Scholar]
  40. Aydin YA. Aksoy ND Isolation of cellulose producing bacteria from wastes of vinegar fermentation. Proceedings of the world congress on engineering and computer science 2009
    [Google Scholar]
  41. Shimwell JL. The true significance of Hoyer’s medium in the differentiation of Acetobacter species. J Inst Brew 1957; 63:44–45 [View Article]
    [Google Scholar]
  42. Shimwell J, Carr JG, Rhodes ME. Differentiation of Acetomonas and Pseudomonas. Microbiology 1960; 23:283–286
    [Google Scholar]
  43. Smibert RM, Krieg NR. General characterization. In Gerdhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981 pp 409–443
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004633
Loading
/content/journal/ijsem/10.1099/ijsem.0.004633
Loading

Data & Media loading...

Most cited Most Cited RSS feed