1887

Abstract

As part of a study investigating the microbiome of bee hives and honey, two novel strains (TMW 2.1880 and TMW 2.1889) of acetic acid bacteria were isolated and subsequently taxonomically characterized by a polyphasic approach, which revealed that they cannot be assigned to known species. The isolates are Gram-stain-negative, aerobic, pellicle-forming, catalase-positive and oxidase-negative. Cells of TMW 2.1880 are non-motile, thin/short rods, and cells of TMW 2.1889 are motile and occur as rods and long filaments. Morphological, physiological and phylogenetic analyses revealed a distinct lineage within the genus . Strain TMW 2.1880 is most closely related to the type strain of with a 16S rRNA gene sequence similarity of 99.5 %, and ANIb and DDH values of 94.16 and 56.3 %, respectively. The genome of TMW 2.1880 has a size of 1.98 Mb and a G+C content of 55.3 mol%. Strain TMW 2.1889 is most closely related to the type strain of with a 16S rRNA gene sequence similarity of 99.5 %, and ANIb and DDH values of 85.12 and 29.5 %, respectively. The genome of TMW 2.1889 has a size of 2.07 Mb and a G+C content of 60.4 mol%. Ubiquinone analysis revealed that both strains contained Q-10 as the main respiratory quinone. Major fatty acids for both strains were C, C cyclo 8 and summed feature 8, respectively, and additionally C 2-OH only for TMW 2.1880 and C only for TMW 2.1889. Based on polyphasic evidence, the two isolates from honeycombs of represent two novel species of the genus , for which the names sp. nov and sp. nov. are proposed. The designated respective type strains are TMW 2.1880 (=LMG 31882=CECT 30114) and TMW 2.1889 (=LMG 31883=CECT 30113).

Funding
This study was supported by the:
  • MaikHilgarth , Bundesanstalt für Landwirtschaft und Ernährung , (Award 2816IP001)
  • MaikHilgarth , Bundesministerium für Wirtschaft und Energie , (Award 19180 N)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004633
2021-01-13
2021-01-20
Loading full text...

Full text loading...

References

  1. Yamada Y. Systematics of Acetic Acid Bacteria Acetic Acid Bacteria: Springer; 2016 pp 1 50
    [Google Scholar]
  2. De Vuyst L, Camu N, De Winter T, Vandemeulebroecke K, Van de Perre V, Perre Vde V et al. Validation of the (GTG)(5)-rep-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. Int J Food Microbiol 2008; 125: 79 90 [CrossRef] [PubMed]
    [Google Scholar]
  3. Kersters K, Lisdiyanti P, Komagata K, Swings J. The family Acetobacteraceae: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia . The prokaryotes 2006; 5: 163 200
    [Google Scholar]
  4. Yamada Y, Yukphan P. Genera and species in acetic acid bacteria. Int J Food Microbiol 2008; 125: 15 24 [CrossRef] [PubMed]
    [Google Scholar]
  5. Jakob F, Quintero Y, Musacchio A, Estrada-de Los Santos P, Hernández L et al. Acetic acid bacteria encode two levansucrase types of different ecological relationship. Environ Microbiol 2019; 21: 4151 4165 [CrossRef] [PubMed]
    [Google Scholar]
  6. Gulitz A, Stadie J, Wenning M, Ehrmann MA, Vogel RF. The microbial diversity of water kefir. Int J Food Microbiol 2011; 151: 284 288 [CrossRef] [PubMed]
    [Google Scholar]
  7. De Roos J, De Vuyst L. Acetic acid bacteria in fermented foods and beverages. Curr Opin Biotechnol 2018; 49: 115 119 [CrossRef] [PubMed]
    [Google Scholar]
  8. Raspor P, Goranovič D. Biotechnological applications of acetic acid bacteria. Crit Rev Biotechnol 2008; 28: 101 124 [CrossRef] [PubMed]
    [Google Scholar]
  9. Crotti E, Rizzi A, Chouaia B, Ricci I, Favia G et al. Acetic acid bacteria, newly emerging symbionts of insects. Appl Environ Microbiol 2010; 76: 6963 6970 [CrossRef] [PubMed]
    [Google Scholar]
  10. Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 2011; 20: 619 628 [CrossRef] [PubMed]
    [Google Scholar]
  11. Cariveau DP, Elijah Powell J, Koch H, Winfree R, Moran NA. Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). Isme J 2014; 8: 2369 2379 [CrossRef] [PubMed]
    [Google Scholar]
  12. Li L, Praet J, Borremans W, Nunes OC, Manaia CM et al. Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop. Int J Syst Evol Microbiol 2015; 65: 267 273 [CrossRef] [PubMed]
    [Google Scholar]
  13. Yun J-H, Lee J-Y, Hyun D-W, Jung M-J, Bae J-W. Bombella apis sp. nov., an acetic acid bacterium isolated from the midgut of a honey bee. Int J Syst Evol Microbiol 2017; 67: 2184 2188 [CrossRef] [PubMed]
    [Google Scholar]
  14. Corby-Harris V, Snyder L, Meador CAD, Naldo R, Mott B et al. Parasaccharibacter apiumApium, gen. nov., sp. nov., improves honey bee (Hymenoptera: Apidae) resistance to Nosema . J Econ Entomol 2016; 109: 537 543 [CrossRef] [PubMed]
    [Google Scholar]
  15. Corby-Harris V, Snyder LA, Schwan MR, Maes P, McFrederick QS et al. Origin and effect of alpha 2.2 Acetobacteraceae in honey bee larvae and description of Parasaccharibacter apiumApium gen. nov., sp. nov. Appl Environ Microbiol 2014; 80: 7460 7472 [CrossRef] [PubMed]
    [Google Scholar]
  16. Bonilla-Rosso G, Paredes JC, Das S, Ellegaard KM, Emery O. Acetobacteraceae in the honey bee gut comprise two distant clades with diverging metabolism and ecological niches. bioRxiv 2019; 861260:
    [Google Scholar]
  17. Babendreier D, Joller D, Romeis J, Bigler F, Widmer F. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol Ecol 2007; 59: 600 610 [CrossRef] [PubMed]
    [Google Scholar]
  18. Anderson KE, Sheehan TH, Mott BM, Maes P, Snyder L et al. Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS One 2013; 8: e83125 [CrossRef] [PubMed]
    [Google Scholar]
  19. Koch H, Abrol DP, Li J, Schmid-Hempel P. Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Mol Ecol 2013; 22: 2028 2044 [CrossRef] [PubMed]
    [Google Scholar]
  20. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613 1617 [CrossRef] [PubMed]
    [Google Scholar]
  21. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403 410 [CrossRef] [PubMed]
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870 1874 [CrossRef] [PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406 425 [CrossRef] [PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368 376 [CrossRef] [PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20: 406 416 [CrossRef]
    [Google Scholar]
  26. Huptas C, Scherer S, Wenning M. Optimized illumina PCR-free library preparation for bacterial whole genome sequencing and analysis of factors influencing de novo assembly. BMC Res Notes 2016; 9: 269 [CrossRef] [PubMed]
    [Google Scholar]
  27. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25: 1043 1055 [CrossRef] [PubMed]
    [Google Scholar]
  28. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H, S-M H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67: 2053 2057 [CrossRef] [PubMed]
    [Google Scholar]
  29. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44: 6614 6624 [CrossRef] [PubMed]
    [Google Scholar]
  30. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81 91 [CrossRef] [PubMed]
    [Google Scholar]
  31. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32: 929 931 [CrossRef] [PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106: 19126 19131 [CrossRef] [PubMed]
    [Google Scholar]
  33. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Brenner D, Grimont P et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463 464 [CrossRef]
    [Google Scholar]
  34. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846 849 [CrossRef]
    [Google Scholar]
  35. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16: 584 586 [CrossRef] [PubMed]
    [Google Scholar]
  36. Kuykendall LD, Roy MA, O'NEILL JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38: 358 361 [CrossRef]
    [Google Scholar]
  37. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990a; 13: 128 130 [CrossRef]
    [Google Scholar]
  38. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990b; 66: 199 202 [CrossRef]
    [Google Scholar]
  39. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955; 1: 138 146
    [Google Scholar]
  40. Aydin YA. Aksoy ND Isolation of cellulose producing bacteria from wastes of vinegar fermentation. Proceedings of the world congress on engineering and computer science 2009
    [Google Scholar]
  41. Shimwell JL. The true significance of Hoyer’s medium in the differentiation of Acetobacter species. J Inst Brew 1957; 63: 44 45 [CrossRef]
    [Google Scholar]
  42. Shimwell J, Carr JG, Rhodes ME. Differentiation of Acetomonas and Pseudomonas. Microbiology 1960; 23: 283 286
    [Google Scholar]
  43. Smibert RM, Krieg NR. General characterization. In Gerdhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981 pp 409 443
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004633
Loading
/content/journal/ijsem/10.1099/ijsem.0.004633
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error