1887

Abstract

Here, we describe three endosymbiotic bacterial strains isolated from the gills of the shipworm, (Teredinidae: Bivalvia). These strains, designated as Bs08, Bs12 and Bsc2, are Gram-stain-negative, microaerobic, gammaproteobacteria that grow on cellulose and a variety of substrates derived from lignocellulose. Phenotypic characterization, phylogeny based on 16S rRNA gene and whole genome sequence data, amino acid identity and percentage of conserved proteins analyses, show that these strains are novel and may be assigned to the genus . The three strains may be differentiated and distinguished from other previously described species based on a combination of four characteristics: colony colour (Bs12, purple; others beige to brown), marine salt requirement (Bs12, Bsc2 and strains), the capacity for nitrogen fixation (Bs08 and strains) and the ability to respire nitrate (Bs08). Based on these findings, we propose the names sp. nov. (type strain Bs08=ATCC TSD-121=KCTC 62964), sp. nov. (type strain Bs12=ATCC TSD-122=KCTC 62965) and sp. nov. (type strain Bsc2=ATCC TSD-123=KCTC 62966).

Funding
This study was supported by the:
  • NOAA Research (Award NA19OAR010303)
    • Principle Award Recipient: DanielL. Distel
  • Division of Biological Infrastructure (Award 1722553)
    • Principle Award Recipient: NotApplicable
  • Division of Integrative Organismal Systems (Award IOS 1442759)
    • Principle Award Recipient: DanielL. Distel
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004627
2021-01-13
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/2/ijsem004627.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004627&mimeType=html&fmt=ahah

References

  1. Duchesne LC, Larson DW. Cellulose and the evolution of plant life. Bioscience 1989; 39:238–241 [View Article]
    [Google Scholar]
  2. Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL et al. Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 2015; 29:108–119 [View Article][PubMed]
    [Google Scholar]
  3. Koeck DE, Pechtl A, Zverlov VV, Schwarz WH, Pechtl A, Zverlov VV. Genomics of cellulolytic bacteria. Curr Opin Biotechnol 2014; 29:171–183 [View Article][PubMed]
    [Google Scholar]
  4. Haigler CH, Weimer PJ. (editors) Biosynthesis and Biodegradation of Cellulose New York, NY: M. Dekker; 1991
    [Google Scholar]
  5. Distel DL. The biology of marine wood boring bivalves and their bacterial endosymbionts. In Goodell B, Nicholas DD, Schultz TP. (editors) Wood Deterioration and Preservation (ACS Symposium Series) Washington: American Chemical Society Press; 2003 pp 253–271
    [Google Scholar]
  6. Betcher MA, Fung JM, Han AW, O'Connor R, Seronay R et al. Microbial distribution and abundance in the digestive system of five shipworm species (Bivalvia: Teredinidae). PLoS One 2012; 7:e45309 [View Article][PubMed]
    [Google Scholar]
  7. Popham JD, Dickson MR. Bacterial associations in the teredo Bankia australis (Lamellibranchia: Mollusca). Mar Biol 1973; 19:338–340 [View Article]
    [Google Scholar]
  8. Distel DL, DeLong EF, Waterbury JB. Phylogenetic characterization and in situ localization of the bacterial symbiont of shipworms (Teredinidae: Bivalvia) by using 16S rRNA sequence analysis and oligodeoxynucleotide probe hybridization. Appl Environ Microbiol 1991; 57:2376–2382 [View Article][PubMed]
    [Google Scholar]
  9. O'Connor RM, Fung JM, Sharp KH, Benner JS, McClung C et al. Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk. Proc Natl Acad Sci U S A 2014; 111:E5096–E5104 [View Article][PubMed]
    [Google Scholar]
  10. Waterbury JB, Calloway CB, Turner RD. A cellulolytic nitrogen-fixing bacterium cultured from the gland of deshayes in shipworms (Bivalvia: Teredinidae). Science 1983; 221:1401–1403 [View Article][PubMed]
    [Google Scholar]
  11. Distel DL, Morrill W, MacLaren-Toussaint N, Franks D, Waterbury J. Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Int J Syst Evol Microbiol 2002; 52:2261–2269 [View Article][PubMed]
    [Google Scholar]
  12. Altamia MA, Shipway JR, Stein D, Betcher MA, Fung JM et al. Teredinibacter waterburyi sp. nov., a marine, cellulolytic endosymbiotic bacterium isolated from the gills of the wood-boring mollusc Bankia setacea (Bivalvia: Teredinidae) and emended description of the genus Teredinibacter. Int J Syst Evol Microbiol 2020; 70:2388–2394 [View Article][PubMed]
    [Google Scholar]
  13. Altamia MA, Wood N, Fung JM, Dedrick S, Linton EW et al. Genetic differentiation among isolates of Teredinibacter turnerae, a widely occurring intracellular endosymbiont of shipworms. Mol Ecol 2014; 23:1418–1432 [View Article][PubMed]
    [Google Scholar]
  14. Yang JC, Madupu R, Durkin AS, Ekborg NA, Pedamallu CS et al. The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms). PLoS One 2009; 4:e6085 [View Article][PubMed]
    [Google Scholar]
  15. Altamia MA, Shipway JR, Concepcion GP, Haygood MG, Distel DL. Thiosocius teredinicola gen. nov., sp. nov., a sulfur-oxidizing chemolithoautotrophic endosymbiont cultivated from the gills of the giant shipworm, Kuphus polythalamius. Int J Syst Evol Microbiol 2019; 69:638–644 [View Article][PubMed]
    [Google Scholar]
  16. Distel DL, Altamia MA, Lin Z, Shipway JR, Han A et al. Discovery of chemoautotrophic symbiosis in the giant shipworm Kuphus polythalamia (Bivalvia: Teredinidae) extends wooden-steps theory. Proc Natl Acad Sci U S A 2017; 114:E3652–E3658 [View Article][PubMed]
    [Google Scholar]
  17. Sipe AR, Wilbur AE, Cary SC. Bacterial symbiont transmission in the wood-boring shipworm Bankia setacea (Bivalvia: Teredinidae). Appl Environ Microbiol 2000; 66:1685–1691 [View Article][PubMed]
    [Google Scholar]
  18. Ekborg NA, Gonzalez JM, Howard MB, Taylor LE, Hutcheson SW et al. Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. Int J Syst Evol Microbiol 2005; 55:1545–1549 [View Article][PubMed]
    [Google Scholar]
  19. Ling SK, Xia J, Liu Y, Chen GJ, Du Z-J. Agarilytica rhodophyticola gen. nov., sp. nov., isolated from Gracilaria blodgettii. Int J Syst Evol Microbiol 2017; 67:3778–3783 [View Article][PubMed]
    [Google Scholar]
  20. Lechene CP, Luyten Y, McMahon G, Distel DL. Quantitative imaging of nitrogen fixation by individual bacteria within animal cells. Science 2007; 317:1563–1566 [View Article][PubMed]
    [Google Scholar]
  21. Suarez C, Ratering S, Kramer I, Schnell S. Cellvibrio diazotrophicus sp. nov., a nitrogen-fixing bacteria isolated from the rhizosphere of salt meadow plants and emended description of the genus Cellvibrio. Int J Syst Evol Microbiol 2014; 64:481–486 [View Article][PubMed]
    [Google Scholar]
  22. Grigoriev A. Analyzing genomes with cumulative skew diagrams. Nucleic Acids Res 1998; 26:2286–2290 [View Article][PubMed]
    [Google Scholar]
  23. Liu M, Li X, Xie Y, Bi D, Sun J et al. ICEberg 2.0: an updated database of bacterial integrative and conjugative elements. Nucleic Acids Res 2019; 47:D660–D665 [View Article][PubMed]
    [Google Scholar]
  24. Lin Z, Kong H, Nei M, Ma H. Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer. Proc Natl Acad Sci U S A Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't 2006; 103:10328–10333 [View Article]
    [Google Scholar]
  25. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic acids research, Comparative Study Research Support, Non-U. S. Gov't 2002; 30:3059–3066
    [Google Scholar]
  26. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003; 19:1572–1574 [View Article][PubMed]
    [Google Scholar]
  27. Spring S, Scheuner C, Goker M, Klenk HP. A taxonomic framework for emerging groups of ecologically important marine Gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data. Front Microbiol 2015; 6:281 [View Article][PubMed]
    [Google Scholar]
  28. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2019 [View Article][PubMed]
    [Google Scholar]
  29. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  30. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe 2014; 9:111–118 [View Article]
    [Google Scholar]
  31. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed]
    [Google Scholar]
  32. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article][PubMed]
    [Google Scholar]
  33. Lucena T, Arahal DR, Sanz-Saez I, Acinas SG, Sánchez O et al. Thalassocella blandensis gen. nov., sp. nov., a novel member of the family Cellvibrionaceae. Int J Syst Evol Microbiol 2020; 70:1231–1239 [View Article][PubMed]
    [Google Scholar]
  34. Greene RV, Freer SN. Growth characteristics of a novel nitrogen-fixing cellulolytic bacterium. Appl Environ Microbiol 1986; 52:982–986 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004627
Loading
/content/journal/ijsem/10.1099/ijsem.0.004627
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error