1887

Abstract

A non-motile, Gram-staining negative, catalase- and oxidase-positive, crescent-rod shaped bacterium, designated strain CUG 91308, was isolated from a sediment sample of Qinghai Lake, Qinghai Province, China. Colonies on OSM agar were round, smooth, flat and pinkish-orange in colour. Strain CUG 91308 could grow at 15–37 °C, pH 6–12 and in the presence of up to 7.0 % NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CUG 91308 belonged to the family and formed a clade with the genus in the phylogenetic tree, but separated from any species of the known genera within the family. The genomic DNA G+C content is about 42.1 %. The predominant fatty acids (>10 %) were iso-C (21.1 %), summed feature 3 (C7c / C6c / iso-C 2OH) (14.3 %), iso-C 3OH (12.3 %) and summed feature 9 (iso-C9c / C 10-methyl) (10.6 %). The polar lipids of strain CUG 91308 were phosphatidylethanolamine (PE) and four unidentified polar lipids. Strain CUG 91308 contained MK-7 as the major respiratory quinone. On the basis of phenotypic, genotypic and phylogenetic data, strain CUG 91308 represents a novel species of a novel genus in the family , for which the name gen. nov., sp. nov. is proposed. The type strain of the proposed new isolate is CUG 91308 (=KCTC 62636=CGMCC 1.13593).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 91751206)
    • Principle Award Recipient: HongchenJiang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004621
2021-01-06
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/2/ijsem004621.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004621&mimeType=html&fmt=ahah

References

  1. Nedashkovskaya OI, Ludwig W et al. Family II. Cyclobacteriaceae fam. nov. In Krieg NR, Ludwig W, Hedlund BP. (editors) Bergey’s Manual of Systematic Bacteriology 4, 2nd ed. New York: Springer; 2011 p 423
    [Google Scholar]
  2. Pinnaka AK, Tanuku NRS et al. The Family Cyclobacteriaceae. In Rosenberg E, DeLong EF, Lory S. (editors) The Prokaryotes: Other major lineages of bacteria and the archaea, 4nd ed. Berlin, Heidelberg: Springer; 2014 pp 551–575
    [Google Scholar]
  3. McBride MJ, Liu W, Lu X, Zhu Y, Zhang W et al. The family cytophagaceae. In Rosenberg E, DeLong EF, Lory S. (editors) The Prokaryotes: Other Major Lineages of Bacteria and the Archaea, 4nd ed. Berlin, Heidelberg: Springer; 2014 pp 577–593
    [Google Scholar]
  4. Anil Kumar P, Aravind R, Francis K, Bhumika V, Ritika C et al. Shivajiella indica gen. nov., sp. nov., a marine bacterium of the family "Cyclobacteriaceae" with nitrate reducing activity. Syst Appl Microbiol 2012; 35:320–325 [View Article][PubMed]
    [Google Scholar]
  5. Raj HD, Maloy SR. Proposal of Cyclobacterium marinum gen. nov., comb. nov. for a marine bacterium previously assigned to the genus Flectobacillus. Int J Syst Bacteriol 1990; 40:337–347 [View Article]
    [Google Scholar]
  6. Van Trappen S, Vandecandelaere I, Mergaert J, Swings J. Algoriphagus antarcticus sp. nov., a novel psychrophile from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 2004; 54:1969–1973 [View Article][PubMed]
    [Google Scholar]
  7. Ying J-Y, Wang B-J, Yang S-S, Liu S-J. Cyclobacterium lianum sp. nov., a marine bacterium isolated from sediment of an oilfield in the South China Sea, and emended description of the genus Cyclobacterium. Int J Syst Evol Microbiol 2006; 56:2927–2930 [View Article][PubMed]
    [Google Scholar]
  8. Liu Y, Li H, Jiang J-T, Liu Y-H, Song X-F et al. Algoriphagus aquatilis sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 2009; 59:1759–1763 [View Article][PubMed]
    [Google Scholar]
  9. Kämpfer P, Young C-C, Chen W-M, Rekha PD, Fallschissel K et al. Fontibacter flavus gen. nov., sp. nov., a member of the family 'Cyclobacteriaceae', isolated from a hot spring. Int J Syst Evol Microbiol 2010; 60:2066–2070 [View Article][PubMed]
    [Google Scholar]
  10. Anil Kumar P, Srinivas TNR, Madhu S, Manorama R, Shivaji S. Indibacter alkaliphilus gen. nov., sp. nov., an alkaliphilic bacterium isolated from a haloalkaline lake. Int J Syst Evol Microbiol 2010; 60:721–726 [View Article][PubMed]
    [Google Scholar]
  11. Tian S-P, Wang Y-X, Hu B, Zhang X-X, Xiao W et al. Litoribacter ruber gen. nov., sp. nov., an alkaliphilic, halotolerant bacterium isolated from a soda lake sediment. Int J Syst Evol Microbiol 2010; 60:2996–3001 [View Article][PubMed]
    [Google Scholar]
  12. Liu YP, Wang YX, Li YX, Feng FY, Liu HR et al. Mongoliicoccus roseus gen. nov., sp. nov., an alkaliphilic bacterium isolated from a haloalkaline lake. Int J Syst Evol Microbiol 2012; 62:2206–2212 [View Article][PubMed]
    [Google Scholar]
  13. Divyasree B, Srinivas A, Sasikala C, Ramana CV. Description of Lunatimonas salinarum sp. nov. Int J Syst Evol Microbiol 2016; 66:5223–5227 [View Article][PubMed]
    [Google Scholar]
  14. Lee DW, Lee AH, Lee H, Kim J-J, Khim JS et al. Echinicola sediminis sp. nov., a marine bacterium isolated from coastal sediment. Int J Syst Evol Microbiol 2017; 67:3351–3357 [View Article][PubMed]
    [Google Scholar]
  15. Jiang H-C, Huang J-R, Yang J. Halotolerant and halophilic microbes and their environmental implications in saline and hypersaline lakes in Qinghai Province, China. In Egamberdieva D, Birkeland NK, Panosyan H, W-J Li. (editors) Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications 8 Singapore: Springer; 2018 pp 299–316
    [Google Scholar]
  16. Shen J, Liu X-Q, Wang S-M, Matsumoto R. Palaeoclimatic changes in the Qinghai lake area during the last 18,000 years. Quatern Int 2005; 136:131–140
    [Google Scholar]
  17. Jiang H, Dong H, Yu B, Ye Q, Shen J et al. Dominance of putative marine benthic Archaea in Qinghai Lake, north-western China. Environ Microbiol 2008; 10:2355–2367 [View Article]
    [Google Scholar]
  18. Eguchi M, Nishikawa T, Macdonald K, Cavicchioli R, Gottschal JC et al. Responses to stress and nutrient availability by the marine ultramicrobacterium Sphingomonas sp. strain RB2256. Appl Environ Microbiol 1996; 62:1287–1294 [View Article][PubMed]
    [Google Scholar]
  19. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  27. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  28. Zhang L-Y, Ming H, Zhao Z-L, Ji W-L, Salam N et al. Nocardioides allogilvus sp. nov., a novel actinobacterium isolated from a karst cave. Int J Syst Evol Microbiol 2018; 68:2485–2490 [View Article][PubMed]
    [Google Scholar]
  29. Hua Z-S, Qu Y-N, Zhu Q, Zhou E-M, Qi Y-L et al. Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nat Commun 2018; 9:2832 [View Article][PubMed]
    [Google Scholar]
  30. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed]
    [Google Scholar]
  31. Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 2012; 28:1033–1034 [View Article][PubMed]
    [Google Scholar]
  32. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  33. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article][PubMed]
    [Google Scholar]
  34. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  35. Letunic I, Bork P. Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [View Article][PubMed]
    [Google Scholar]
  36. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article][PubMed]
    [Google Scholar]
  37. Leifson E. Atlas of bacterial flagellation. Q Rev Biol 1960; 242:
    [Google Scholar]
  38. Nie G-X, Ming H, Li S, Zhou E-M, Cheng J et al. Amycolatopsis dongchuanensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 2012; 62:2650–2656 [View Article][PubMed]
    [Google Scholar]
  39. Gordon RE, Barnett DA, Handerhan JE, Pang CHN. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  40. Williams ST, Goodfellow M, Alderson G. Genus Streptomyces Waksman and Henrici 1943, 339AL. In Williams ST, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology 4 Baltimore: Williams & Willkins; 1989 pp 2453–2492
    [Google Scholar]
  41. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101.. Newark: Microbial ID, Inc; 1990
    [Google Scholar]
  42. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  43. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  44. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  45. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  46. Srinivas TNR, Aditya S, Bhumika V, Kumar PA. Lunatimonas lonarensis gen. nov., sp. nov., a haloalkaline bacterium of the family Cyclobacteriaceae with nitrate reducing activity. Syst Appl Microbiol 2014; 37:10–16 [View Article][PubMed]
    [Google Scholar]
  47. Shahinpei A, Amoozegar MA, Sepahy AA, Schumann P, Ventosa A. Cyclobacterium halophilum sp. nov., a marine bacterium isolated from a coastal-marine wetland. Int J Syst Evol Microbiol 2014; 64:1000–1005 [View Article][PubMed]
    [Google Scholar]
  48. Yang CX, Liu YP, Bao QH, Feng FY, Liu HR et al. Mongoliitalea lutea gen. nov., sp. nov., an alkaliphilic, halotolerant bacterium isolated from a haloalkaline lake. Int J Syst Evol Microbiol 2012; 62:647–653 [View Article][PubMed]
    [Google Scholar]
  49. Bhumika V, Srinivas TNR, Ravinder K, Anil Kumar P, Kumar PA. Mariniradius saccharolyticus gen. nov., sp. nov., a member of the family Cyclobacteriaceae isolated from marine aquaculture pond water, and emended descriptions of the genus Aquiflexum and Aquiflexum balticum. Int J Syst Evol Microbiol 2013; 63:2088–2094 [View Article][PubMed]
    [Google Scholar]
  50. Brettar I, Christen R, Höfle MG. Aquiflexum balticum gen. nov., sp. nov., a novel marine bacterium of the Cytophaga-Flavobacterium-Bacteroides group isolated from surface water of the central Baltic Sea. Int J Syst Evol Microbiol 2004; 54:2335–2341 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004621
Loading
/content/journal/ijsem/10.1099/ijsem.0.004621
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error