1887

Abstract

A novel sulphate-reducing, Gram-stain-negative, anaerobic strain, isolate XJ01, recovered from production fluid at the LiaoHe oilfield, PR China, was the subject of a polyphasic study. The isolate together with NCIMB 9442 and DSM 5308 formed a distinct, well-supported clade in the 16S rRNA gene tree. The taxonomic status of the clade was underscored by complementary phenotypic data. The three isolates comprising the clade formed distinct phyletic branches and were distinguished using a combination of physiological features and by low average nucleotide identity and digital DNA–DNA hybridization values. Consequently, it is proposed that isolate XJ01 represents a novel genus and species for which the name gen. nov., sp. nov. is proposed with the type strain XJ01 (=CGMCC 1.5227=DSM 107637). It is also proposed that and be reclassified as comb. nov. and comb. nov., respectively.

Funding
This study was supported by the:
  • National Major Science and Technology Projects of China (Award 2016ZX05040002)
    • Principle Award Recipient: YunYang Wan
  • National Major Science and Technology Projects of China (Award 2016ZX05050011)
    • Principle Award Recipient: YunYang Wan
  • National Natural Science Foundation of China (Award 41373126)
    • Principle Award Recipient: YunYang Wan
  • National Natural Science Foundation of China (Award 41373086)
    • Principle Award Recipient: YunYang Wan
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004618
2021-01-06
2021-08-02
Loading full text...

Full text loading...

References

  1. Kluyver A, van Niel C. Prospects for a natural system of classification of bacteria[J]. Zentralbl. Bakteriol. Parasitenkd. Infectinskr. Hyg., Abt. II 1936; 94:369–403
    [Google Scholar]
  2. Wan YY. Dictionary for Resources and Taxonomy of Prokaryotes[M] Beijing: Petroleum Industry Press (In Chinese); 2017
    [Google Scholar]
  3. Wan YY, Zhao GP. Research on sulfur microorganisms in prokaryotes [J]. Microbiol China 2017; 44:1471–1480
    [Google Scholar]
  4. Kuever J, Rainey R, Widdel F. Genus Desulfovibrio[M]//Garrity G. In Brenner D, Krieg N, Staley J. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2005 pp 926–938
    [Google Scholar]
  5. Baron EJ, Summanen P, Downes J, Roberts MC, Wexler H et al. Bilophila wadsworthia, gen. nov. and sp. nov., a unique gram-negative anaerobic rod recovered from appendicitis specimens and human faeces. J Gen Microbiol 1989; 135:3405–3411 [View Article][PubMed]
    [Google Scholar]
  6. Zhao C, Gao Z, Qin Q, Li F, Ruan L. Desulfobaculum xiamenensis gen. nov., sp. nov., a member of the family Desulfovibrionaceae isolated from marine mangrove sediment. Int J Syst Evol Microbiol 2012; 62:1570–1575 [View Article]
    [Google Scholar]
  7. Klouche N, Basso O, Lascourreges J-F, Cayol J-L, Thomas P et al. Desulfocurvus vexinensis gen. nov., sp. nov., a sulfate-reducing bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 2009; 59:3100–3104 [View Article]
    [Google Scholar]
  8. Shivani Y, Subhash Y, Sasikala C, Ramana CV. Halodesulfovibrio spirochaetisodalis gen. nov. sp. nov. and reclassification of four Desulfovibrio spp. Int J Syst Evol Microbiol 2017; 67:87–93 [View Article]
    [Google Scholar]
  9. McOrist S, Gebhart CJ, Boid R, Barns SM. Characterization of Lawsonia intracellularis gen. nov., sp. nov., the obligately intracellular bacterium of porcine proliferative enteropathy. Int J Syst Bacteriol 1995; 45:820–825 [View Article][PubMed]
    [Google Scholar]
  10. Cao J, Gayet N, Zeng X, Shao Z, Jebbar M et al. Pseudodesulfovibrio indicus gen. nov., sp. nov., a piezophilic sulfate-reducing bacterium from the Indian Ocean and reclassification of four species of the genus Desulfovibrio. Int J Syst Evol Microbiol 2016; 66:3904–3911 [View Article]
    [Google Scholar]
  11. Spring S, Sorokin DY, Verbarg S, Rohde M, Woyke T et al. Sulfate-Reducing bacteria that produce exopolymers thrive in the calcifying zone of a hypersaline cyanobacterial mat. Front Microbiol 2019; 10:862 [View Article][PubMed]
    [Google Scholar]
  12. Junghare M, Schink B. Desulfoprunum benzoelyticum gen. nov., sp. nov., a Gram-stain-negative, benzoate-degrading, sulfate-reducing bacterium isolated from a wastewater treatment plant. Int J Syst Evol Microbiol 2015; 65:77–84 [View Article]
    [Google Scholar]
  13. Jiang Y, Zhou D, Rong C, Deng X, Zhou R et al. Isolation of high efficient sulfate-reducing bacteria and its biological desulfurization capability[J]. Environ Sci Technol 2009; 32:13–17
    [Google Scholar]
  14. Redburn AC, Patel BK. Desulfovibrio longreachii sp. nov., a sulfate-reducing bacterium isolated from the great artesian basin of Australia. FEMS Microbiol Lett 1994; 115:33–38 [View Article]
    [Google Scholar]
  15. Lopez-Cortes A, Fardeau ML, Fauque G, Joulian C, Ollivier B. Reclassification of the sulfate- and nitrate-reducing bacterium Desulfovibrio vulgaris subsp. oxamicus as Desulfovibrio oxamicus sp. nov., comb. nov. Int J Syst Evol Microbiol 2006; 56:1495–1499 [View Article]
    [Google Scholar]
  16. Postgate JR, Campbell LL. Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol Rev 1966; 30:732–738 [View Article][PubMed]
    [Google Scholar]
  17. Trinkerl M, Breunig A, Schauder R, König H. Desulfovibrio termitidis sp. nov., a carbohydrate-degrading sulfate-reducing bacterium from the hindgut of a termite. Syst Appl Microbiol 1990; 13:372–377 [View Article]
    [Google Scholar]
  18. Wan YY, Dong H. Environmental Geomicrobiology Experiments[M] Bei Jing: Petroleum Industry Press (In Chinese); 2014
    [Google Scholar]
  19. Iverson WP. Growth of Desulfovibrio on the surface of agar media. Appl Microbiol 1966; 14:529–534 [View Article][PubMed]
    [Google Scholar]
  20. Hungate RE. A roll tube method for cultivation of strict anaerobes[M]//Norris JR, Ribbons DW. Methods in Microbiology New York: Academic Press; 1969 pp 117–132
    [Google Scholar]
  21. Zhou L, Liu X, Dong X. Methanospirillum psychrodurum sp. nov., isolated from wetland soil. Int J Syst Evol Microbiol 2014; 64:638–641 [View Article]
    [Google Scholar]
  22. Lane D. 16S/23S rRNA sequencing[M]//. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley & Sons Ltd; 1991 pp 115–175
    [Google Scholar]
  23. Č M, Ines P, Marija M, Irena C. Spatio-temporal dynamics of sulfate-reducing bacteria in extreme environment of Rogoznica Lake revealed by 16S rRNA analysis[J]. J Marine Syst 2017; 172:14–23
    [Google Scholar]
  24. Kim O, Cho Y, Lee K, Yoon S, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article]
    [Google Scholar]
  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  27. Nouioui I, Carro L, Garcia-Lopez M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria[J]. Front Microbiol 2007; 2018:9
    [Google Scholar]
  28. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  29. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  31. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article]
    [Google Scholar]
  32. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Brenner D, Grimont P et al. Report of the AD hoc committee on reconciliation of approaches to bacterial yystematics [J]. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  33. Postgate J. A diagnostic reaction of Desulphovibrio desulphuricans. Nature 1959; 163:481–482 [View Article]
    [Google Scholar]
  34. Mu H, Wan Y. Functional diversity on microbial communities in formation water with different exploitation methods in heavy oil reservoirs[J]. Biotic Resources 2018; 40:120–129
    [Google Scholar]
  35. Wan Y, Zhu Y, Jiang L, Luo N. Multi-temperature pyrolysis gas chromatography: a rapid method to differentiate microorganisms[Z]. Shanghai, China 2017; 2017:
    [Google Scholar]
  36. Wan Y, Zhu Y, Jiang L. A kind of microbial species identification device and microbial species identification method[P] ZL 201710006035.X. 2017-05-31.
  37. Sasser M, Sasser M. Bacterial identification by gas chromatographic analysis of fatty acid methyl esters (GC-FAME)[EB/OL]. [2006-06-12] http://youngin.com/application/AN-0702-0013EN.pdf. http://youngin.com/application/AN-0702-0013EN.pdf.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004618
Loading
/content/journal/ijsem/10.1099/ijsem.0.004618
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error