1887

Abstract

A polyphasic taxonomic approach was used to characterize a Gram-stain-positive bacterium, designated strain CC-CFT486, isolated from soil sampled in a maize field in Taiwan. Cells of strain CC-CFT486 were short rods, motile with polar flagella, catalase-positive and oxidase-positive. Optimal growth occurred at 30 °С, pH 8 and 1 % NaCl. Phylogenetic analyses based on 16S rRNA genes revealed a distinct taxonomic position attained by strain CC-CFT486 associated with (97.0 % sequence identity), (97.0 %), (96.8 %) and (96.8 %), and lower sequence similarity values to other species. Average nucleotide identity (ANI) values were 70.6–77.8 % (=11) compared within the type strains of the genus . Strain CC-CFT486 contained C, C, C 8c and C 9c as the predominant fatty acids. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, two unidentified aminophospholipids and three unknown phospholipids. The cell wall peptidoglycan of strains CC-CFT486 contained -diaminopimelic acid (-DAP) and the major polyamine was spermidine. The DNA G+C content was 70.6 mol% and the predominant quinone was menaquinone 9 (MK-9). Based on its distinct phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence and ANI analyses, strain CC-CFT486 is proposed to represent a novel species, for which the name sp. nov. (type strain CC-CFT486=BCRC 81217=JCM 33499).

Funding
This study was supported by the:
  • Ministry of Science and Technology, Taiwan (Award MOST 109-2313-B-005-026)
    • Principle Award Recipient: Chiu-ChungYoung
  • Ministry of Science and Technology, Taiwan (Award MOST 109-2313-B-005-026)
    • Principle Award Recipient: Chia-FangTsai
  • Ministry of Science and Technology, Taiwan (Award MOST 109-2313-B-005-026)
    • Principle Award Recipient: Shih-YaoLin
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004616
2021-01-05
2021-07-29
Loading full text...

Full text loading...

References

  1. Miller ES, Woese CR, Brenner S. Description of the erythromycin-producing bacterium Arthrobacter sp. strain NRRL B-3381 as Aeromicrobium erythreum gen. nov., sp. nov. Int J Syst Bacteriol 1991; 41:363–368 [View Article][PubMed]
    [Google Scholar]
  2. Yoon J-H, Lee C-H, Oh T-K. Aeromicrobium alkaliterrae sp. nov., isolated from an alkaline soil, and emended description of the genus Aeromicrobium. Int J Syst Evol Microbiol 2005; 55:2171–2175 [View Article][PubMed]
    [Google Scholar]
  3. Cui Y-S, Im W-T, Yin C-R, Lee J-S, Lee KC et al. Aeromicrobium panaciterrae sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 2007; 57:687–691 [View Article][PubMed]
    [Google Scholar]
  4. Kim MK, Park M-J, Im W-T, Yang D-C. Aeromicrobium ginsengisoli sp. nov., isolated from a ginseng field. Int J Syst Evol Microbiol 2008; 58:2025–2030 [View Article][PubMed]
    [Google Scholar]
  5. Siddiqi MZ, Lee SY, Choi KD, Im W-T. Aeromicrobium panacisoli sp. nov. Isolated from Soil of Ginseng Cultivating Field. Curr Microbiol 2018; 75:624–629 [View Article][PubMed]
    [Google Scholar]
  6. Yan Z-F, Lin P, Chu X, Kook M, Li C-T et al. Aeromicrobium halotolerans sp. nov., isolated from desert soil sample. Arch Microbiol 2016; 198:423–427 [View Article][PubMed]
    [Google Scholar]
  7. Tamura T, Yokota A. Transfer of Nocardioides fastidiosa Collins and Stackebrandt 1989 to the genus Aeromicrobium as Aeromicrobium fastidiosum comb. nov. Int J Syst Bacteriol 1994; 44:608–611 [View Article]
    [Google Scholar]
  8. Bruns A, Philipp H, Cypionka H, Brinkhoff T. Aeromicrobium marinum sp. nov., an abundant pelagic bacterium isolated from the German Wadden sea. Int J Syst Evol Microbiol 2003; 53:1917–1923 [View Article][PubMed]
    [Google Scholar]
  9. Niu L, Xiong M, Tang T, Song L, Hu X et al. Aeromicrobium camelliae sp. nov., isolated from Pu'er tea. Int J Syst Evol Microbiol 2015; 65:4369–4373 [View Article][PubMed]
    [Google Scholar]
  10. Sun Y, Liu W-H, Ai M-J, Su J, Yu L-Y et al. Aeromicrobium lacus sp. nov., a novel actinobacterium isolated from a drinking-water reservoir. Int J Syst Evol Microbiol 2019; 69:460–464 [View Article][PubMed]
    [Google Scholar]
  11. Lee SD, Kim SJ. Aeromicrobium tamlense sp. nov., isolated from dried seaweed. Int J Syst Evol Microbiol 2007; 57:337–341 [View Article][PubMed]
    [Google Scholar]
  12. Lee DW, Lee SD. Aeromicrobium ponti sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2008; 58:987–991 [View Article][PubMed]
    [Google Scholar]
  13. Kim SH, Yang HO, Sohn YC, Kwon HC. Aeromicrobium halocynthiae sp. nov., a taurocholic acid-producing bacterium isolated from the marine ascidian Halocynthia roretzi. Int J Syst Evol Microbiol 2010; 60:2793–2798 [View Article][PubMed]
    [Google Scholar]
  14. Tang Y, Zhou G, Zhang L, Mao J, Luo X et al. Aeromicrobium flavum sp. nov., isolated from air. Int J Syst Evol Microbiol 2008; 58:1860–1863 [View Article][PubMed]
    [Google Scholar]
  15. Ramasamy D, Kokcha S, Lagier J-C, Nguyen T-T, Raoult D et al. Genome sequence and description of Aeromicrobium massiliense sp. nov. Stand Genomic Sci 2012; 7:246–257 [View Article][PubMed]
    [Google Scholar]
  16. Zhao L-H, Xing X, Liu Y-Y, Sha S, Song C et al. Aeromicrobium piscarium sp. nov., isolated from the intestine of Collichthys lucidus. Int J Syst Evol Microbiol 2020; 70:52805286 [View Article][PubMed]
    [Google Scholar]
  17. Ber P, Trappen SV, Vandamme P, Trček J. Aeromicrobium choanae sp. nov., an actinobacterium isolated from the choana of a garden warbler. Int J Syst Evol Microbiol 2017; 67:357–361 [View Article][PubMed]
    [Google Scholar]
  18. Tuo L, Yan X-R, Liu Y. Aeromicrobium endophyticum sp. nov., a novel endophytic actinobacterium isolated from bark of Melia azedaeach L. Int J Syst Evol Microbiol 2020; 70:693–699 [View Article][PubMed]
    [Google Scholar]
  19. FN L, Liao SL, Liu SW, Jin T, Sun CH. Aeromicrobium endophyticum sp. nov., an endophytic actinobacterium isolated from reed (Phragmites australis). J Micorbiol 2019; 57:725–731
    [Google Scholar]
  20. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  21. de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E et al. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 2019; 69:1852–1863 [View Article][PubMed]
    [Google Scholar]
  22. Murray RGE, Doetsch RN, Robinow CF. Determination and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology.; 1994 pp 32–34
    [Google Scholar]
  23. Lin S-Y, Liu Y-C, Hameed A, Hsu Y-H, Lai W-A et al. Azospirillum fermentarium sp. nov., a nitrogen-fixing species isolated from a fermenter. Int J Syst Evol Microbiol 2013; 63:3762–3768 [View Article][PubMed]
    [Google Scholar]
  24. Hameed A, Shahina M, Lin S-Y, Lai W-A, Hsu Y-H et al. Aquibacter zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from surface seawater, and emended descriptions of the genera Aestuariibaculum and Gaetbulibacter. Int J Syst Evol Microbiol 2014; 64:138–145 [View Article][PubMed]
    [Google Scholar]
  25. Zhou J, Fries MR, Chee-Sanford JC, Tiedje JM. Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth of toluene and description of Azoarcus tolulyticus sp. nov. Int J Syst Bacteriol 1995; 45:500–506 [View Article][PubMed]
    [Google Scholar]
  26. Heiner CR, Hunkapiller KL, Chen SM, Glass JI, Chen EY. Sequencing multimegabase-template DNA with BigDye terminator chemistry. Genome Res 1998; 8:557–561 [View Article][PubMed]
    [Google Scholar]
  27. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  28. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  29. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  31. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  32. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  33. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. editor Mammalian Protein Metabolism 3 New York: Academic Press; 1969 pp 21–32
    [Google Scholar]
  34. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  35. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  36. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  37. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  38. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  39. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  40. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I, SI N et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed]
    [Google Scholar]
  41. Rhuland LE, Work E, Denman RF, Hoare DS. The behavior of the isomers of diaminopimelic acid on paper chromatograms. J Am Chem Soc 1955; 77:4844–4846 [View Article]
    [Google Scholar]
  42. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article][PubMed]
    [Google Scholar]
  43. Paisley R. MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual Newark, DE: MIDI; 1996
    [Google Scholar]
  44. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  45. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  46. Scherer P, Kneifel H. Distribution of polyamines in methanogenic bacteria. J Bacteriol 1983; 154:1315–1322 [View Article][PubMed]
    [Google Scholar]
  47. Collins MD. Isoprenoid quinone analysis in classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp 267–287
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004616
Loading
/content/journal/ijsem/10.1099/ijsem.0.004616
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error