1887

Abstract

Three Gram-stain-negative, rod-shaped, non-spore-forming bacteria, BA1, Q614 and PB68.1, isolated from the digestive system of entomopathogenic nematodes, were biochemically and molecularly characterized to clarify their taxonomic affiliations. The 16S rRNA gene sequences of these strains suggest that they belong to the Gammaproteobacteria, to the family , and to the genus . Deeper analyses using whole genome-based phylogenetic reconstructions suggest that BA1 is closely related to , that Q614 is closely related to and that PB68.1 is closely related to genomic comparisons confirm these observations: BA1 and 15138 share 68.8 % digital DNA–DNA hybridization (dDDH), Q614 and SF41 share 75.4 % dDDH, and PB68.1 and DSM 17609 share 76.6  % dDDH. Physiological and biochemical characterizations reveal that these three strains also differ from all validly described species and from their more closely related taxa, contrary to what was previously suggested. We therefore propose to classify BA1 as a new species within the genus , Q614 as a new subspecies within and PB68.1 as a new subspecies within . Hence, the following names are proposed for these strains: sp. nov. with the type strain BA1(=DSM 111180=CCOS 1943=LMG 31957), subsp subsp. nov. with the type strain Q614 (=DSM 111144=CCOS 1944=LMG 31959) and subsp subsp. nov. with the type strain PB68.1 (=DSM 111145=CCOS 1942). These propositions automatically create subsp subsp. nov. with SF41 as the type strain (currently classified as ) and subsp. subsp. nov. with DSM17609 as the type strain (currently classified as ).

Funding
This study was supported by the:
  • Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (CH) (Award 186094)
    • Principle Award Recipient: RicardoA. R. Machado
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004610
2021-01-19
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/1/ijsem004610.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004610&mimeType=html&fmt=ahah

References

  1. Clarke DJ. Photorhabdus: a tale of contrasting interactions. Microbiology 2020; 166:micro000907335–348 [View Article][PubMed]
    [Google Scholar]
  2. Poinar GO, Veremchuk G V. A new strain of entomopathogenic nematode and geographical distribution of Neoaplectana carpocapsae Weiser (Rhabditida, Steinernematidae). Zool Zhurna 1970966–969
    [Google Scholar]
  3. Khan A, Brooks WM, Hirschmann H. Chromonema heliothidis n. gen., n. sp. (Steinernematidae, Nematoda), a parasite of Heliothis zea (Noctuidae, Lepidoptera), and other insects. J Nematol 1976; 8:159–168[PubMed]
    [Google Scholar]
  4. Kaya HK, Gaugler R. Entomopathogenic nematodes. Annu Rev Entomol 1993; 38:181–206 [View Article]
    [Google Scholar]
  5. Lacey LA, Georgis R. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J Nematol 2012; 44:218–225[PubMed]
    [Google Scholar]
  6. Tobias NJ, Mishra B, Gupta DK, Sharma R, Thines M et al. Genome comparisons provide insights into the role of secondary metabolites in the pathogenic phase of the Photorhabdus life cycle. BMC Genomics 2016; 17:537 [View Article][PubMed]
    [Google Scholar]
  7. Joyce SA, Clarke DJ. A hexA homologue from Photorhabdus regulates pathogenicity, symbiosis and phenotypic variation. Mol Microbiol 2003; 47:1445–1457 [View Article][PubMed]
    [Google Scholar]
  8. Blackburn M, Golubeva E, Bowen D, Ffrench-Constant RH. A novel insecticidal toxin from Photorhabdus luminescens, toxin complex A (TCA), and its histopathological effects on the midgut of Manduca sexta . Appl Environ Microbiol 1998; 64:3036–3041 [View Article][PubMed]
    [Google Scholar]
  9. Boemare NE, Akhurst RJ, Mourant RG. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Bacteriol 1993; 43:249–255 [View Article]
    [Google Scholar]
  10. Akhurst RJ, Boemare NE, Janssen PH, Peel MM, Alfredson DA et al. Taxonomy of Australian clinical isolates of the genus Photorhabdus and proposal of Photorhabdus asymbiotica subsp. asymbiotica subsp. nov. and P. asymbiotica subsp. australis subsp. nov. Int J Syst Evol Microbiol 2004; 54:1301–1310 [View Article][PubMed]
    [Google Scholar]
  11. Ferreira T, van Reenen C, Pagès S, Tailliez P, Malan AP et al. Photorhabdus luminescens subsp. noenieputensis subsp. nov., a symbiotic bacterium associated with a novel Heterorhabditis species related to Heterorhabditis indica. Int J Syst Evol Microbiol 2013; 63:1853–1858 [View Article][PubMed]
    [Google Scholar]
  12. Ferreira T, van Reenen CA, Endo A, Tailliez P, Pagès S et al. Photorhabdus heterorhabditis sp. nov., a symbiont of the entomopathogenic nematode Heterorhabditis zealandica . Int J Syst Evol Microbiol 2014; 64:1540–1545 [View Article][PubMed]
    [Google Scholar]
  13. Fischer-Le Saux M, Viallard V, Brunel B, Normand P, Boemare NE. Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Int J Syst Bacteriol 1999; 49 Pt 4:1645–1656 [View Article][PubMed]
    [Google Scholar]
  14. Glaeser SP, Tobias NJ, Thanwisai A, Chantratita N, Bode HB et al. Photorhabdus luminescens subsp. namnaonensis subsp. nov., isolated from Heterorhabditis baujardi nematodes. Int J Syst Evol Microbiol 2017; 67:1046–1051 [View Article][PubMed]
    [Google Scholar]
  15. Hazir S, Stackebrandt E, Lang E, Schumann P, Ehlers R-U et al. Two new subspecies of Photorhabdus luminescens, isolated from Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae): Photorhabdus luminescens subsp. kayaii subsp. nov. and Photorhabdus luminescens subsp. thracensis subsp. nov. Syst Appl Microbiol 2004; 27:36–42 [View Article][PubMed]
    [Google Scholar]
  16. Machado RAR, Bruno P, Arce CCM, Liechti N, Köhler A et al. Photorhabdus khanii subsp. guanajuatensis subsp. nov., isolated from Heterorhabditis atacamensis, and Photorhabdus luminescens subsp. mexicana subsp. nov., isolated from Heterorhabditis mexicana entomopathogenic nematodes . Int J Syst Evol Microbiol 2019; 69:652–661 [View Article][PubMed]
    [Google Scholar]
  17. Machado RAR, Wüthrich D, Kuhnert P, Arce CCM, Thönen L et al. Whole-genome-based revisit of Photorhabdus phylogeny: proposal for the elevation of most Photorhabdus subspecies to the species level and description of one novel species Photorhabdus bodei sp. nov., and one novel subspecies Photorhabdus laumondii subsp. clarkei subsp. nov. Int J Syst Evol Microbiol 2018; 68:2664–2681 [View Article][PubMed]
    [Google Scholar]
  18. Tailliez P, Laroui C, Ginibre N, Paule A, Pagès S et al. Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. Int J Syst Evol Microbiol 2010; 60:1921–1937 [View Article][PubMed]
    [Google Scholar]
  19. Tóth T, Lakatos T. Photorhabdus temperata subsp. cinerea subsp. nov., isolated from Heterorhabditis nematodes. Int J Syst Evol Microbiol 2008; 58:2579–2581 [View Article][PubMed]
    [Google Scholar]
  20. Thomas GM, Poinar GO. Xenorhabdus gen. nov., a genus of entomopathogenic, Nematophilic bacteria of the family Enterobacteriaceae . Int J Syst Bacteriol 1979; 29:352–360 [View Article]
    [Google Scholar]
  21. Szállás E, Koch C, Fodor A, Burghardt J, Buss O et al. Phylogenetic evidence for the taxonomic heterogeneity of Photorhabdus luminescens . Int J Syst Bacteriol 1997; 47:402–407 [View Article][PubMed]
    [Google Scholar]
  22. Orozco RA, Hill T, Stock SP. Characterization and phylogenetic relationships of Photorhabdus luminescens subsp. sonorensis (γ-Proteobacteria: Enterobacteriaceae), the bacterial symbiont of the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae). Curr Microbiol 2013; 66:30–39 [View Article][PubMed]
    [Google Scholar]
  23. An R, Grewal PS. Photorhabdus temperata subsp. stackebrandtii subsp. nov. (Enterobacteriales: Enterobacteriaceae). Curr Microbiol 2010; 61:291–297 [View Article][PubMed]
    [Google Scholar]
  24. An R, Grewal PS. Photorhabdus luminescens subsp. kleinii subsp. nov. (Enterobacteriales: Enterobacteriaceae). Curr Microbiol 2011; 62:539–543 [View Article][PubMed]
    [Google Scholar]
  25. Ghazal S, Hurst SG, Morris K, Abebe-Akele F, Thomas WK et al. Draft genome sequence of Photorhabdus luminescens strain BA1, an entomopathogenic bacterium isolated from nematodes found in Egypt. Genome Announc 2014; 2:e00396–14 [View Article][PubMed]
    [Google Scholar]
  26. Thanwisai A, Tandhavanant S, Saiprom N, Waterfield NR, Ke Long P, Long PK et al. Diversity of Xenorhabdus and Photorhabdus spp. and their symbiotic entomopathogenic nematodes from Thailand. PLoS One 2012; 7:e43835 [View Article][PubMed]
    [Google Scholar]
  27. Akhurst RJ, Boemare NE. A non-luminescent strain of Xenorhabdus luminescens (Enterobacteriaceae). Microbiology 1986; 132:1917–1922 [View Article]
    [Google Scholar]
  28. Hussein MA, El-Souud AA. Isolation and characterization of two heterorhabditid and one steinernematid nematodes from Egypt. Int J Nematol 2006; 16:7
    [Google Scholar]
  29. Tremblay J, Déziel E. Improving the reproducibility of Pseudomonas aeruginosa swarming motility assays. J Basic Microbiol 2008; 48:509–515 [View Article][PubMed]
    [Google Scholar]
  30. Akhurst RJ, Mourant RG, Baud L, Boemare NE. Phenotypic and DNA relatedness between nematode symbionts and clinical strains of the genus Photorhabdus (Enterobacteriaceae). Int J Syst Bacteriol 1996; 46:1034–1041 [View Article][PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [View Article][PubMed]
    [Google Scholar]
  33. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  34. Auch AF, Klenk H-P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article][PubMed]
    [Google Scholar]
  35. Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol 2014; 31:1077–1088 [View Article][PubMed]
    [Google Scholar]
  36. Lemoine F, Correia D, Lefort V, Doppelt-Azeroual O, Mareuil F et al. NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res 2019; 47:W260–W265 [View Article][PubMed]
    [Google Scholar]
  37. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article][PubMed]
    [Google Scholar]
  38. Lemoine F, Domelevo Entfellner J-B, Wilkinson E, Correia D, Dávila Felipe M et al. Renewing Felsenstein's phylogenetic bootstrap in the era of big data. Nature 2018; 556:452–456 [View Article][PubMed]
    [Google Scholar]
  39. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 2010; 5:e9490 [View Article]
    [Google Scholar]
  40. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 1998; 64:795–799 [View Article][PubMed]
    [Google Scholar]
  41. Hill V, Kuhnert P, Erb M, Machado RAR. Identification of Photorhabdus symbionts by MALDI-TOF MS. Microbiology 2020; 166:mic000905 [View Article][PubMed]
    [Google Scholar]
  42. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  43. Kumar S, Stecher G, Tamura K. mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  44. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  45. Chevenet F, Brun C, Bañuls A-L, Jacq B, Christen R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 2006; 7:439 [View Article][PubMed]
    [Google Scholar]
  46. Letunic I, Bork P. Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [View Article][PubMed]
    [Google Scholar]
  47. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004610
Loading
/content/journal/ijsem/10.1099/ijsem.0.004610
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error