sp. nov., a novel Gram-stain-negative bacterium, isolated from a faecal sample of an international traveller Open Access

Abstract

The genus comprises five species and at least five lineages currently not assigned to any species, termed ‘ cryptic clades’. We isolated an strain from an international traveller and resolved the complete DNA sequence of the chromosome and an IncI multidrug resistance plasmid using Illumina and Nanopore whole-genome sequencing (WGS). Strain OPT1704 can be differentiated from existing species using biochemical (VITEK2) and genomic tests [average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH)]. Phylogenetic analysis based on alignment of 16S rRNA sequences and 682 concatenated core genes showed similar results. Our analysis further revealed that strain OPT1704 falls within cryptic clade IV and is closely related to cryptic clade III. Combining our analyses with publicly available WGS data of cryptic clades III and IV from Enterobase confirmed the close relationship between clades III and IV (>96 % interclade ANI), warranting assignment of both clades to the same novel species. We propose sp. nov. as a novel species, encompassing cryptic clades III and IV (type strain OPT1704=NCCB 100732=NCTC 14359).

Funding
This study was supported by the:
  • Horizon 2020 Framework Programme (Award COMPARE, 643476)
    • Principle Award Recipient: NotApplicable
  • ZonMw (Award 50-51700-98-120)
    • Principle Award Recipient: NotApplicable
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004609
2021-01-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/2/ijsem004609.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004609&mimeType=html&fmt=ahah

References

  1. Castellani A, Chambers AJ. Manual of tropical medicine. William Wood 1919
    [Google Scholar]
  2. Brenner DJ, Davis BR, Steigerwalt AG, Riddle CF, McWhorter AC et al. Atypical biogroups of Escherichia coli found in clinical specimens and description of Escherichia hermannii sp. nov. J Clin Microbiol 1982; 15:703–713 [View Article]
    [Google Scholar]
  3. Farmer JJ, Fanning GR, Davis BR, O'Hara CM, Riddle C et al. Escherichia fergusonii and Enterobacter taylorae, two new species of Enterobacteriaceae isolated from clinical specimens. J Clin Microbiol 1985; 21:77–81 [View Article]
    [Google Scholar]
  4. Huys G, Cnockaert M, Janda JM, Swings J. Escherichia albertii sp. nov., a diarrhoeagenic species isolated from stool specimens of Bangladeshi children. Int J Syst Evol Microbiol 2003; 53:807–810 [View Article]
    [Google Scholar]
  5. Liu S, Jin D, Lan R, Wang Y, Meng Q et al. Escherichia marmotae sp. nov., isolated from faeces of Marmota himalayana. Int J Syst Evol Microbiol 2015; 65:2130–2134 [View Article]
    [Google Scholar]
  6. Hata H, Natori T, Mizuno T, Kanazawa I, Eldesouky I et al. Phylogenetics of family Enterobacteriaceae and proposal to reclassify Escherichia hermannii and Salmonella subterranea as Atlantibacter hermannii and Atlantibacter subterranea gen. nov., comb. nov. Microbiol Immunol 2016; 60:303–311 [View Article]
    [Google Scholar]
  7. Alnajar S, Gupta RS. Phylogenomics and comparative genomic studies delineate six main clades within the family Enterobacteriaceae and support the reclassification of several polyphyletic members of the family. Infection, Genetics and Evolution 2017; 54:108–127 [View Article]
    [Google Scholar]
  8. Priest FG, Barker M. Gram-Negative bacteria associated with brewery yeasts: reclassification of Obesumbacterium proteus biogroup 2 as Shimwellia pseudoproteus gen. nov., sp. nov., and transfer of Escherichia blattae to Shimwellia blattae comb. nov. Int J Syst Evol Microbiol 2010; 60:828–833 [View Article]
    [Google Scholar]
  9. Tamura K, Sakazaki R, Kosako Y, Yoshizaki E. Leclercia adecarboxylata gen. nov., comb. nov., formerly known as Escherichia adecarboxylata. Curr Microbiol 1986; 13:179–184 [View Article]
    [Google Scholar]
  10. Liu S, Feng J, Pu J, Xu X, Lu S et al. Genomic and molecular characterisation of Escherichia marmotae from wild rodents in Qinghai-Tibet plateau as a potential pathogen. Sci Rep 2019; 9:1–9 [View Article]
    [Google Scholar]
  11. Ooka T, Seto K, Kawano K, Kobayashi H, Etoh Y et al. Clinical Significance of Escherichia albertii. Emerg Infect Dis 2012; 18:488–492 [View Article]
    [Google Scholar]
  12. Russo T, Johnson JR. Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect 2003; 5:449–456 [View Article]
    [Google Scholar]
  13. Savini V, Catavitello C, Talia M, Manna A, Pompetti F et al. Multidrug-Resistant Escherichia fergusonii: a case of acute cystitis. J Clin Microbiol 2008; 46:1551–1552 [View Article]
    [Google Scholar]
  14. Walk ST. The "Cryptic" Escherichia. EcoSal Plus 2015; 6: [View Article][PubMed]
    [Google Scholar]
  15. Gangiredla J, Mammel MK, Barnaba TJ, Tartera C, Gebru ST et al. Draft genome sequences of Escherichia albertii, Escherichia fergusonii, and strains belonging to six cryptic lineages of Escherichia spp. Genome Announc 2018; 6:e00271–18 [View Article][PubMed]
    [Google Scholar]
  16. Arcilla MS, van Hattem JM, Haverkate MR, Bootsma MCJ, van Genderen PJJ et al. Import and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae by international travellers (combat study): a prospective, multicentre cohort study. Lancet Infect Dis 2017; 17:78–85 [View Article][PubMed]
    [Google Scholar]
  17. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article]
    [Google Scholar]
  18. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article]
    [Google Scholar]
  19. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 2013; 57:3348–3357 [View Article]
    [Google Scholar]
  20. Chen L. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 2004; 33:D325–D328 [View Article]
    [Google Scholar]
  21. Sundin GW, Bender CL. Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Appl Environ Microbiol 1993; 59:1018–1024 [View Article]
    [Google Scholar]
  22. Ojdana D, Sieńko A, Sacha P, Majewski P, Wieczorek P et al. Genetic basis of enzymatic resistance of E. coli to aminoglycosides. Adv Med Sci 2018; 63:9–13 [View Article]
    [Google Scholar]
  23. Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 2019; 47:D351–D360 [View Article]
    [Google Scholar]
  24. The European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters Version 9; 2019
  25. Leber AL. Clinical Microbiology Procedures Handbook John Wiley & Sons; 2020
    [Google Scholar]
  26. Abbott SL, O'Connor J, Robin T, Zimmer BL, Janda JM. Biochemical properties of a newly described Escherichia species, Escherichia albertii. J Clin Microbiol 2003; 41:4852–4854 [View Article]
    [Google Scholar]
  27. Zhou Z, Alikhan N-F, Mohamed K, Fan Y, Achtman M et al. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res 2020; 30:138–152 [View Article]
    [Google Scholar]
  28. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article]
    [Google Scholar]
  29. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  30. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr 2016; 4:e1900v1
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  32. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  33. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  34. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article]
    [Google Scholar]
  35. Redondo-Salvo S, Fernández-López R, Ruiz R, Vielva L, de Toro M et al. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat Commun 2020; 11:3602 [View Article][PubMed]
    [Google Scholar]
  36. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article]
    [Google Scholar]
  37. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  38. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article]
    [Google Scholar]
  39. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article]
    [Google Scholar]
  40. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article]
    [Google Scholar]
  41. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article][PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article][PubMed]
    [Google Scholar]
  43. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article]
    [Google Scholar]
  44. Vignaroli C, Di Sante L, Magi G, Luna GM, Di Cesare A et al. Adhesion of marine cryptic Escherichia isolates to human intestinal epithelial cells. Isme J 2015; 9:508–515 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004609
Loading
/content/journal/ijsem/10.1099/ijsem.0.004609
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited Most Cited RSS feed