sp. nov., isolated from an Antarctic marine sponge Free

Abstract

A Gram-negative, aerobic, rod-shaped, non-motile bacterium, designated strain HQ09, was isolated from a marine sponge off the coast of Fields Peninsula, West Antarctica. Strain HQ09 grew at 4–35 °C (optimum, 25 °C), pH 5–9 (optimum, pH 7.0), and with 1–10% NaCl (optimum, 2 %). Phylogenetic analysis based on the 16S rRNA gene sequences showed that strain HQ09 was affiliated with the genus in the family , sharing 99.64 % identity with the type strain of , the only known species in the genus. However, the low digital DNA–DNA hybridization (dDDH) (27.2 %) and average nucleotide identity (ANI) (83.63 %) values between strain HQ09 and the type strain of indicated that they did not belong to the same species. Strain HQ09 could also be differentiated from by many phenotypic characteristics. The major fatty acids (>5 %) of strain HQ09 were summed feature 8 (C C ω6c), 11-methyl C c, C and C19 : 0 cyclo 8. The polar lipids included phosphatidylglycerol, phosphatidylcholine, two unidentified aminolipids and one unidentified phospholipid. The predominant respiratory quinone was ubiquinone 10 (Q-10). The genomic DNA G+C content was 62.63 mol%. Four secondary metabolite biosynthetic gene clusters were detected in the genome, potentially producing ectoine and three types of unknown compounds. On the basis of the polyphasic evidences obtained in this study, strain HQ09 represents a novel species of the genus , for which the name sp. nov. is proposed, with the type strain being HQ09 (=KCTC 52229=CGMCC 1.15538).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 41976224)
    • Principle Award Recipient: LiLiao
  • National Key Research and Development Program of China (Award 2018YFC1406701)
    • Principle Award Recipient: BoChen
  • National Key Research and Development Program of China (Award 2018YFC1406702)
    • Principle Award Recipient: LiLiao
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004605
2020-12-17
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/71/1/ijsem004605.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004605&mimeType=html&fmt=ahah

References

  1. Zhang Y-J, Yu N, Zhang X-Y, Chen S. Pseudopuniceibacterium sediminis gen. nov., sp. nov., a member of the family Rhodobacteraceae isolated from sediment. Int J Syst Evol Microbiol 2019; 69:2541–2546 [View Article][PubMed]
    [Google Scholar]
  2. Tianero MD, Balaich JN, Donia MS. Localized production of defence chemicals by intracellular symbionts of Haliclona sponges. Nat Microbiol 2019; 4:1149–1159 [View Article][PubMed]
    [Google Scholar]
  3. Webster NS, Thomas T. The sponge Hologenome. mBio 2016; 7:e00135–00116 [View Article][PubMed]
    [Google Scholar]
  4. Papale M, Rizzo C, Fani R, Bertolino M, Costa G et al. Exploring the diversity and metabolic profiles of bacterial communities associated with Antarctic sponges (TERRA nova Bay, Ross sea). Front Ecol Evol 2020; 8: [View Article]
    [Google Scholar]
  5. Cárdenas CA, González-Aravena M, Font A, Hestetun JT, Hajdu E et al. High similarity in the microbiota of cold-water sponges of the Genus Mycale from two different geographical areas. PeerJ 2018; 6:e4935 [View Article][PubMed]
    [Google Scholar]
  6. Cárdenas CA, Font A, Steinert G, Rondon R, González-Aravena M. Temporal stability of bacterial communities in Antarctic sponges. Front Microbiol 2019; 10:2699 [View Article][PubMed]
    [Google Scholar]
  7. Downey RV, Griffiths HJ, Linse K, Janussen D. Diversity and distribution patterns in high southern latitude sponges. PLoS One 2012; 7:e41672 [View Article][PubMed]
    [Google Scholar]
  8. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  9. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  10. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  13. Kumar S. A stepwise algorithm for finding minimum evolution trees. Mol Biol Evol 1996; 13:584–593 [View Article][PubMed]
    [Google Scholar]
  14. Denise CB, Claudio O, Jaqueline DSB, Jansen Z, Jorge IRP. Estimates of pairwise genetic distance between Nannostomus species under the Kimura 2- parameter (K2P) model. PLos One 2015
    [Google Scholar]
  15. Zuo G, Hao B. CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genomics Proteomics Bioinformatics 2015; 13:321–331 [View Article][PubMed]
    [Google Scholar]
  16. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article][PubMed]
    [Google Scholar]
  17. Su S, Liao L, Yu Y, Zhang J, Chen B. Genomic data mining of an Antarctic deep-sea actinobacterium, Janibacter limosus P3-3-X1. Mar Genomics 2019; 48:100684 [View Article]
    [Google Scholar]
  18. Liao L, Su S, Yu Y, Zhang J, Chen B. Complete genome and data mining of Aeromicrobium sp. A1–2 isolated from the Southern Ocean. Mar Genomics 2019; 45:5–7 [View Article]
    [Google Scholar]
  19. Li R, Li Y, Kristiansen K, Wang J. Soap: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article][PubMed]
    [Google Scholar]
  20. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 2007; 23:673–679 [View Article][PubMed]
    [Google Scholar]
  21. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  22. Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 2005; 33:W686–W689 [View Article][PubMed]
    [Google Scholar]
  23. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M et al. The gene ontology (go) database and informatics resource. Nucleic Acids Res 2004; 32:D258–261 [View Article][PubMed]
    [Google Scholar]
  24. Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR et al. CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 2007; 35:D237–D240 [View Article][PubMed]
    [Google Scholar]
  25. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28:27–30 [View Article][PubMed]
    [Google Scholar]
  26. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  28. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article][PubMed]
    [Google Scholar]
  29. Stępniewska Z, Goraj W, Kuźniar A, Pytlak A, Ciepielski J et al. Biosynthesis of ectoine by the methanotrophic bacterial Consortium isolated from Bogdanka coalmine (Poland). Appl Biochem Microbiol 2014; 50:594–600 [View Article]
    [Google Scholar]
  30. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 21–41
    [Google Scholar]
  31. Lu L, Zhang Y, Peng X, Liu J, Qin K et al. Roseovarius arcticus sp. nov., a bacterium isolated from Arctic marine sediment. Int J Syst Evol Microbiol 2020; 70:2072–2078 [View Article][PubMed]
    [Google Scholar]
  32. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004605
Loading
/content/journal/ijsem/10.1099/ijsem.0.004605
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed