1887

Abstract

Wheat blue dwarf (WBD) is one of the most economically damaging cereal crop diseases in northwestern PR China. The agent associated with the WBD disease is a phytoplasma affiliated with the aster yellows (AY) group, subgroup C (16SrI-C). Since phytoplasma strains within the AY group are ecologically and genetically diverse, it has been conceived that the AY phytoplasma group may consist of more than one species. This communication presents evidence to demonstrate that, while each of the two 16 rRNA genes of the WBD phytoplasma shares >97.5 % sequence similarity with that of the ‘ Phytoplasma asteris’ reference strain, the WBD phytoplasma clearly represents an ecologically separated lineage: the WBD phytoplasma not only has its unique transmitting vector () but also elicits a distinctive symptom in its predominant plant host (wheat). In addition, the WBD phytoplasma possesses molecular characteristics that further manifest its significant divergence from ‘. P. asteris’. Such molecular characteristics include lineage-specific antigenic membrane proteins and a lower than 95 % genome-wide average nucleotide identity score with ‘. P. asteris’. These ecological, molecular and genomic evidences justify the recognition of the WBD phytoplasma as a novel taxon, ‘ Phytoplasma tritici’.

Funding
This study was supported by the:
  • RobertE. Davis , Agricultural Research Service , (Award 8042-22000-306-00)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004604
2021-01-19
2021-03-01
Loading full text...

Full text loading...

References

  1. Zhu X, Zhang P, Ren Z. Studies on the blue dwarf disease of wheat. Acta Phytophylacica Sinica 1984; 11:35–41
    [Google Scholar]
  2. Zhang QF, Xiang JY, Yang Y, Zhang R. The primary infection of wheat mycoplasmalike organism blue dwarf disease (WMBD). Acta Phytopathologica Sinica 1996; 11:107–110
    [Google Scholar]
  3. Wu Y, Hao X, Li Z, Gu P, An F et al. Identification of the phytoplasma associated with wheat blue dwarf disease in China. Plant Dis 2010; 94:977–985 [CrossRef][PubMed]
    [Google Scholar]
  4. An D, Wei N, Zhang Q, Zhang R, Zhu N. The first report to wheat mycoplasma like organism blue dwarf disease (WMBD). Acta Phytopathologica Sinica 1991; 21:263–266
    [Google Scholar]
  5. Zhang Q, Zhang R, Ren Z, Ma Y, Zhu X. Wheat blue dwarf disease caused by mycoplasma like organism. Acta Microbiologica Sinica 1993; 33:361–364
    [Google Scholar]
  6. Ishiie T, Doi Y, Yora K, Asuyama H. Suppressive effects of antibiotics of tetracycline group on symptom development of mulberry dwarf disease. Ann Phytopathol Soc Jpn 1967; 33:267–275 [CrossRef]
    [Google Scholar]
  7. Igwegbe EC, Calavan EC. Effect of tetracycline antibiotics on symptom development of stubborn disease and infectious variegation of citrus seedlings. Phytopathology 1973; 63:1044–1048 [CrossRef]
    [Google Scholar]
  8. Gu P, An F, Wu Y, Yang D, Luo Z et al. Comparison and analysis of 16S rDNA fragment of phytoplasma of wheat blue dwarf. Acta Phytopathologica Sinica 2005; 35:403–409
    [Google Scholar]
  9. An F, Wu Y, Sun X, Gu P, Yang Y. Homologic analysis of tuf gene for elongation factor Tu of phytoplasma from wheat blue dwarf. Scientia Agricultura Sinica 2006; 39:74–80
    [Google Scholar]
  10. Chen W, Li Y, Wang Q, Wang N, Wu Y. Comparative genome analysis of wheat blue dwarf phytoplasma, an obligate pathogen that causes wheat blue dwarf disease in China. PLoS One 2014; 9:e96436 [CrossRef][PubMed]
    [Google Scholar]
  11. Maejima K, Oshima K, Namba S. Exploring the phytoplasmas, plant pathogenic bacteria. J Gen Plant Pathol 2014; 80:210–221 [CrossRef]
    [Google Scholar]
  12. IRPCM 'Candidatus Phytoplasma', a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 2004; 54:1243–1255 [CrossRef][PubMed]
    [Google Scholar]
  13. Krieg NR, Parte A, Ludwig W, Whitman WB, Hedlund BP et al. Bergey’s manual of systematic bacteriology. The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes 4 Springer; 2010
    [Google Scholar]
  14. Zhao Y, Davis RE, Wei W, Lee I-M. Should ‘Candidatus Phytoplasma’ be retained within the order Acholeplasmatales?. Int J Syst Evol Microbiol 2015; 65:1075–1082 [CrossRef][PubMed]
    [Google Scholar]
  15. Hampton RO, Stevens JG, Allen TC. Mechanically transmissible mycoplasma from naturally infected peas. Plant Disease Reporter 1969; 53:499–503
    [Google Scholar]
  16. Teranaka M, Otsuka K. Culture of mycoplasma-like organisms associated with several witches’ broom and aster yellow plants on artificial media. Coll Agric Utsunomiya Univ Bull 1973; 8:11–19
    [Google Scholar]
  17. Jacoli GG. Attempts to culture in vitro mycoplasma-like organisms from plants a retrospective view. J Phytopathol 1981; 102:148–152 [CrossRef]
    [Google Scholar]
  18. Contaldo N, Satta E, Zambon Y, Paltrinieri S, Bertaccini A. Development and evaluation of different complex media for phytoplasma isolation and growth. J Microbiol Methods 2016; 127:105–110 [CrossRef][PubMed]
    [Google Scholar]
  19. Oshima K, Kakizawa S, Nishigawa H, Jung H-Y, Wei W et al. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet 2004; 36:27–29 [CrossRef][PubMed]
    [Google Scholar]
  20. Kube M, Mitrovic J, Duduk B, Rabus R, Seemüller E. Current view on phytoplasma genomes and encoded metabolism. Sci World J 2012; 2012:185942 [CrossRef][PubMed]
    [Google Scholar]
  21. Zhao Y, Davis RE, Wei W, Shao J, Jomantiene R. Phytoplasma genomes: evolution through mutually complementary mechanisms, gene loss and horizontal acquisition. In Gross D, Lichens-Park A, Kole C. (editors) Genomics of Plant-Associated Bacteria Heidelberg: Springer-Verlag GmbH; 2014 pp 234–.271
    [Google Scholar]
  22. Lee I-M, Hammond RW, Davis RE, Gundersen DE. Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms. Phytopathology 1993; 83:834–842 [CrossRef]
    [Google Scholar]
  23. Wei W, Davis RE, Lee I-M, Zhao Y. Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol 2007; 57:1855–1867 [CrossRef][PubMed]
    [Google Scholar]
  24. Zhao Y, Wei W, Lee I-M, Shao J, Suo X et al. Construction of an interactive online phytoplasma classification tool, PhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIIII). Int J Syst Evol Microbiol 2009; 59:2582–2593 [CrossRef][PubMed]
    [Google Scholar]
  25. Zhao Y, Davis RE. Criteria for phytoplasma 16Sr group/subgroup delineation and the need of a platform for proper registration of new groups and subgroups. Int J Syst Evol Microbiol 2016; 66:2121–2123 [CrossRef][PubMed]
    [Google Scholar]
  26. Naderali N, Nejat N, Vadamalai G, Davis RE, Wei W et al. 'Candidatus Phytoplasma wodyetiae', a new taxon associated with yellow decline disease of foxtail palm (Wodyetia bifurcata) in Malaysia. Int J Syst Evol Microbiol 2017; 67:3765–3772 [CrossRef][PubMed]
    [Google Scholar]
  27. Gundersen DE, Lee IM, Rehner SA, Davis RE, Kingsbury DT. Phylogeny of mycoplasmalike organisms (phytoplasmas): a basis for their classification. J Bacteriol 1994; 176:5244–5254 [CrossRef][PubMed]
    [Google Scholar]
  28. Zhao Y, Wei W, Davis RE, Lee I-M. Recent advances in 16S rRNA gene-based phytoplasma differentiation, classification and taxonomy. In Weintraub P, Jones P. (editors) Phytoplasmas: Genomes, Plant Hosts and Vectors, Edited by. Wallingford, UK: CABI Publishing; 2010a pp 64–92
    [Google Scholar]
  29. Seemüller E, Schneider B. 'Candidatus Phytoplasma mali', 'Candidatus Phytoplasma pyri' and 'Candidatus Phytoplasma prunorum', the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. Int J Syst Evol Microbiol 2004; 54:1217–1226 [CrossRef][PubMed]
    [Google Scholar]
  30. Jung H-Y, Sawayanagi T, Kakizawa S, Nishigawa H, Wei W et al. 'Candidatus Phytoplasma ziziphi', a novel phytoplasma taxon associated with jujube witches'-broom disease. Int J Syst Evol Microbiol 2003; 53:1037–1041 [CrossRef][PubMed]
    [Google Scholar]
  31. Lee I-M, Martini M, Marcone C, Zhu SF. Classification of phytoplasma strains in the elm yellows group (16SrV) and proposal of 'Candidatus Phytoplasma ulmi' for the phytoplasma associated with elm yellows. Int J Syst Evol Microbiol 2004b; 54:337–347 [CrossRef][PubMed]
    [Google Scholar]
  32. Malembic-Maher S, Salar P, Filippin L, Carle P, Angelini E et al. Genetic diversity of European phytoplasmas of the 16SrV taxonomic group and proposal of 'Candidatus Phytoplasma rubi'. Int J Syst Evol Microbiol 2011; 61:2129–2134 [CrossRef][PubMed]
    [Google Scholar]
  33. Win NKK, Lee S-Y, Bertaccini A, Namba S, Jung H-Y. 'Candidatus Phytoplasma balanitae' associated with witches' broom disease of Balanites triflora . Int J Syst Evol Microbiol 2013; 63:636–640 [CrossRef][PubMed]
    [Google Scholar]
  34. Quaglino F, Zhao Y, Casati P, Bulgari D, Bianco PA et al. 'Candidatus Phytoplasma solani', a novel taxon associated with stolbur- and bois noir-related diseases of plants. Int J Syst Evol Microbiol 2013; 63:2879–2894 [CrossRef][PubMed]
    [Google Scholar]
  35. Lee I-M, Gundersen-Rindal DE, Davis RE, Bottner KD, Marcone C et al. 'Candidatus Phytoplasma asteris', a novel phytoplasma taxon associated with aster yellows and related diseases. Int J Syst Evol Microbiol 2004a; 54:1037–1048 [CrossRef][PubMed]
    [Google Scholar]
  36. CABI Candidatus Phytoplasma asteris’ (yellow disease phytoplasmas) [original text by Carmine Marcone]. Invasive Species Compendium Wallingford, UK: CAB International; 2019
    [Google Scholar]
  37. Pérez-López E, Luna-Rodríguez M, Olivier CY, Dumonceaux TJ. The underestimated diversity of phytoplasmas in Latin America. Int J Syst Evol Microbiol 2016; 66:492–4513 [CrossRef][PubMed]
    [Google Scholar]
  38. Seemüller E, Schneider B, Mäurer R, Ahrens U, Daire X et al. Phylogenetic classification of phytopathogenic mollicutes by sequence analysis of 16S ribosomal DNA. Int J Syst Bacteriol 1994; 44:440–446 [CrossRef][PubMed]
    [Google Scholar]
  39. Seemüller E, Marcone C, Lauer U, Ragozzino A, Gȍschl M. Current status of molecular classification of the phytoplasmas. J Plant Pathol 1998; 80:3–26
    [Google Scholar]
  40. Arocha Y, Antesana O, Montellano E, Franco P, Plata G et al. 'Candidatus Phytoplasma lycopersici', a phytoplasma associated with 'hoja de perejil' disease in Bolivia. Int J Syst Evol Microbiol 2007; 57:1704–1710 [CrossRef][PubMed]
    [Google Scholar]
  41. Gu P, Wu Y, Wu K, Hao X. A study on the characteristics of wheat blue dwarf phytoplasma transmitted by leafhopper Psammotettix striatus . Plant Protection 2007; 33:24–28
    [Google Scholar]
  42. Nielson MW. The leafhopper vectors of phytopathogenic viruses (Homoptera, Cicadellidae). taxonomy, biology and virus transmission. United States Department of Agriculture Technical Bulletin 1968; 1382:386
    [Google Scholar]
  43. Xiang JY, Zhu XS, Liu S. Studies on bionomics of Psammotettix striatus (L.). Acta Phytophylac Sin 1996; 23:327–332
    [Google Scholar]
  44. Weintraub PG, Beanland L. Insect vectors of phytoplasmas. Annu Rev Entomol 2006; 51:91–111 [CrossRef][PubMed]
    [Google Scholar]
  45. Greene JF. A revision of the Nearctic species of the genus Psammotettix (Homoptera: Cicadellidae) Washington, DC: Smithsonian Institution Press; 1971 p 40
    [Google Scholar]
  46. Wilson M, Stewart A, Bidermann R, Nickel H, Niedringhaus R. The planthoppers and leafhoppers of Britain and Ireland. Scheeßel, Germany, Wissenschaftlich Akademischer Buchvertrieb–Fründ; 2015138
  47. Sabaté J, Lavińa A, Batlle A. Potential vectors of grapevine bois noir phytoplasma in Spain and evaluation of their transmission capacity. 14th ICVG Conference Locorotondo: 2003 p 113
    [Google Scholar]
  48. Jović J, Cvrković T, Mitrović M, Krnjajić S, Petrović A et al. Stolbur phytoplasma transmission to maize by Reptalus panzeri and the disease cycle of maize redness in Serbia. Phytopathology 2009; 99:1053–1061 [CrossRef][PubMed]
    [Google Scholar]
  49. Drobnjaković T, Perić P, Marčić D, Picciau L, Alma A et al. Leafhoppers and cixiids in phytoplasma-infected carrot fields: species composition and potential Phytoplasma vectors. J Pestic Phytomedicine 2010; 25:311–318 [CrossRef]
    [Google Scholar]
  50. Mitrović M, Jović J, Cvrković T, Krstić O, Trkulja N et al. Characterisation of a 16SrII phytoplasma strain associated with bushy stunt of hawkweed oxtongue (Picris hieracioides) in south-eastern Serbia and the role of the leafhopper Neoaliturus fenestratus (Deltocephalinae) as a natural vector. Eur J Plant Pathol 2012; 134:647–660 [CrossRef]
    [Google Scholar]
  51. Landi L, Isidoro N, Rioloi P. Natural phytoplasma infection of four phloem-feeding Auchenorrhyncha across vineyard agroecosystems in central-eastern Italy. J Econ Entomol 2013; 106:604–613 [CrossRef][PubMed]
    [Google Scholar]
  52. Wu Y, Gu P, An F, Xiang J, Luo Z et al. Host range of wheat blue dwarf phytoplasma. J Northwest Sci Tech Univ Agric and Forest 2005; 33:8–10
    [Google Scholar]
  53. Konnerth A, Krczal G, Boonrod K. Immunodominant membrane proteins of Phytoplasmas. Microbiology 2016; 162:1267–1273 [CrossRef][PubMed]
    [Google Scholar]
  54. Kakizawa S, Oshima K, Jung H-Y, Suzuki S, Nishigawa H et al. Positive selection acting on a surface membrane protein of the plant-pathogenic phytoplasmas. J Bacteriol 2006; 188:3424–3428 [CrossRef][PubMed]
    [Google Scholar]
  55. Suzuki S, Oshima K, Kakizawa S, Arashida R, Jung H-Y et al. Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proc Natl Acad Sci U S A 2006; 103:4252–4257 [CrossRef][PubMed]
    [Google Scholar]
  56. Hoshi A, Ishii Y, Kakizawa S, Oshima K, Namba S. Host-parasite interaction of phytoplasmas from a molecular biological perspective. Bull Insectol 2007; 60:105–107
    [Google Scholar]
  57. Galetto L, Bosco D, Balestrini R, Genre A, Fletcher J et al. The major antigenic membrane protein of "Candidatus Phytoplasma asteris" selectively interacts with ATP synthase and actin of leafhopper vectors. PLoS One 2011; 6:e22571 [CrossRef][PubMed]
    [Google Scholar]
  58. Rashidi M, Galetto L, Bosco D, Bulgarelli A, Vallino M et al. Role of the major antigenic membrane protein in Phytoplasma transmission by two insect vector species. BMC Microbiol 2015; 15:193 [CrossRef][PubMed]
    [Google Scholar]
  59. Whitcomb RF, Clark TB, Tully JG, Chen TA, Bové JM. Serological classification of spiroplasmas: current status. Yale J Biol Med 1983; 56:453–459[PubMed]
    [Google Scholar]
  60. Jordan RL, Konai M, Lee I-M, Davis RE. Species-specific and cross-reactive monoclonal antibodies to the plant-pathogenic spiroplasmas Spiroplasma citri and S. kunkelii . Phytopathology 1989; 79:880–887 [CrossRef]
    [Google Scholar]
  61. Konnerth A, Krczal G, Boonrod K. Immunodominant membrane proteins of phytoplasmas. Microbiology 2016; 162:1267–1273 [CrossRef][PubMed]
    [Google Scholar]
  62. Breyton C, Haase W, Rapoport TA, Kühlbrandt W, Collinson I. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 2002; 418:662–665 [CrossRef][PubMed]
    [Google Scholar]
  63. Lee I-M, Bottner-Parker KD, Zhao Y, Davis RE, Harrison NA. Phylogenetic analysis and delineation of phytoplasmas based on secY gene sequences. Int J Syst Evol Microbiol 2010; 60:2887–2897 [CrossRef][PubMed]
    [Google Scholar]
  64. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [CrossRef][PubMed]
    [Google Scholar]
  65. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  66. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  67. Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K et al. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol 2018; 68:2386–2392 [CrossRef][PubMed]
    [Google Scholar]
  68. Konstantinidis KT, Rosselló-Móra R. Classifying the uncultivated microbial majority: a place for metagenomic data in the Candidatus proposal. Syst Appl Microbiol 2015; 38:223–230 [CrossRef][PubMed]
    [Google Scholar]
  69. Firrao G, Martini M, Ermacora P, Loi N, Torelli E et al. Genome wide sequence analysis grants unbiased definition of species boundaries in "Candidatus Phytoplasma". Syst Appl Microbiol 2013; 36:539–548 [CrossRef][PubMed]
    [Google Scholar]
  70. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  71. Jomantiene R, Zhao Y, Lee I-M, Davis RE. Phytoplasmas infecting sour cherry and lilac represent two distinct lineages having close evolutionary affinities with clover phyllody phytoplasma. Eur J Plant Pathol 2011; 130:97–107 [CrossRef]
    [Google Scholar]
  72. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  73. Zreik L, Carle P, Bové JM, Garnier M. Characterization of the mycoplasmalike organism associated with witches'-broom disease of lime and proposition of a Candidatus taxon for the organism, "Candidatus phytoplasma aurantifolia". Int J Syst Bacteriol 1995; 45:449–453 [CrossRef][PubMed]
    [Google Scholar]
  74. White DT, Blackall LL, Scott PT, Walsh KB. Phylogenetic positions of phytoplasmas associated with dieback, yellow crinkle and mosaic diseases of papaya, and their proposed inclusion in 'Candidatus Phytoplasma australiense' and a new taxon, 'Candidatus Phytoplasma australasia'. Int J Syst Bacteriol 1998; 48 Pt 3:941–951 [CrossRef][PubMed]
    [Google Scholar]
  75. Davis RE, Zhao Y, Dally EL, Lee I-M, Jomantiene R et al. 'Candidatus Phytoplasma pruni', a novel taxon associated with X-disease of stone fruits, Prunus spp.: multilocus characterization based on 16S rRNA, secY, and ribosomal protein genes. Int J Syst Evol Microbiol 2013; 63:766–776 [CrossRef][PubMed]
    [Google Scholar]
  76. Hiruki C, Wang K. Clover proliferation phytoplasma: 'Candidatus Phytoplasma trifolii'. Int J Syst Evol Microbiol 2004; 54:1349–1353 [CrossRef][PubMed]
    [Google Scholar]
  77. Davis RE, Zhao Y, Dally EL, Jomantiene R, Lee I-M et al. 'Candidatus Phytoplasma sudamericanum', a novel taxon, and strain PassWB-Br4, a new subgroup 16SrIII-V phytoplasma, from diseased passion fruit (Passiflora edulis f. flavicarpa Deg.). Int J Syst Evol Microbiol 2012; 62:984–989 [CrossRef][PubMed]
    [Google Scholar]
  78. Griffiths HM, Sinclair WA, Smart CD, Davis RE. The phytoplasma associated with ash yellows and lilac witches'-broom: 'Candidatus phytoplasma fraxini'. Int J Syst Bacteriol 1999; 49 Pt 4:1605–1614 [CrossRef][PubMed]
    [Google Scholar]
  79. Davis RE, Zhao Y, Wei W, Dally EL, Lee I-M. 'Candidatus Phytoplasma luffae', a novel taxon associated with witches' broom disease of loofah, Luffa aegyptica Mill. Int J Syst Evol Microbiol 2017; 67:3127–3133 [CrossRef][PubMed]
    [Google Scholar]
  80. Verdin E, Salar P, Danet J-L, Choueiri E, Jreijiri F et al. 'Candidatus Phytoplasma phoenicium' sp. nov., a novel phytoplasma associated with an emerging lethal disease of almond trees in Lebanon and Iran. Int J Syst Evol Microbiol 2003; 53:833–838 [CrossRef][PubMed]
    [Google Scholar]
  81. Marcone C, Gibb KS, Streten C, Schneider B. 'Candidatus Phytoplasma spartii', 'Candidatus Phytoplasma rhamni' and 'Candidatus Phytoplasma allocasuarinae', respectively associated with spartium witches'-broom, buckthorn witches'-broom and allocasuarina yellows diseases. Int J Syst Evol Microbiol 2004; 54:1025–1029 [CrossRef][PubMed]
    [Google Scholar]
  82. Jung H-Y, Sawayanagi T, Wongkaew P, Kakizawa S, Nishigawa H et al. "Candidatus Phytoplasma oryzae", a novel phytoplasma taxon associated with rice yellow dwarf disease. Int J Syst Evol Microbiol 2003; 53:1925–1929 [CrossRef][PubMed]
    [Google Scholar]
  83. Šafárˇová D, Zemánek T, Válová P, Navrátil M. 'Candidatus Phytoplasma cirsii', a novel taxon from creeping thistle [Cirsium arvense (L.) Scop]. Int J Syst Evol Microbiol 2016; 66:1745–1753 [CrossRef][PubMed]
    [Google Scholar]
  84. Davis RE, Dally EL, Gundersen DE, Lee IM, Habili N. "Candidatus phytoplasma australiense," a new phytoplasma taxon associated with Australian grapevine yellows. Int J Syst Bacteriol 1997; 47:262–269 [CrossRef][PubMed]
    [Google Scholar]
  85. Sawayanagi T, Horikoshi N, Kanehira T, Shinohara M, Bertaccini A et al. 'Candidatus Phytoplasma japonicum', a new phytoplasma taxon associated with Japanese Hydrangea phyllody. Int J Syst Bacteriol 1999; 49 Pt 3:1275–1285 [CrossRef][PubMed]
    [Google Scholar]
  86. Valiunas D, Staniulis J, Davis RE. 'Candidatus Phytoplasma fragariae', a novel phytoplasma taxon discovered in yellows diseased strawberry, Fragaria x ananassa. Int J Syst Evol Microbiol 2006; 56:277–281 [CrossRef][PubMed]
    [Google Scholar]
  87. Martini M, Marcone C, Mitrović J, Maixner M, Delić D et al. 'Candidatus Phytoplasma convolvuli', a new phytoplasma taxon associated with bindweed yellows in four European countries. Int J Syst Evol Microbiol 2012; 62:2910–2915 [CrossRef][PubMed]
    [Google Scholar]
  88. Davis RE, Harrison NA, Zhao Y, Wei W, Dally EL. 'Candidatus Phytoplasma hispanicum', a novel taxon associated with Mexican periwinkle virescence disease of Catharanthus roseus. Int J Syst Evol Microbiol 2016; 66:3463–3467 [CrossRef][PubMed]
    [Google Scholar]
  89. Fernández FD, Galdeano E, Kornowski MV, Arneodo JD, Conci LR. Description of 'Candidatus Phytoplasma meliae', a phytoplasma associated with Chinaberry (Melia azedarach L.) yellowing in South America. Int J Syst Evol Microbiol 2016; 66:5244–5251 [CrossRef][PubMed]
    [Google Scholar]
  90. Marcone C, Schneider B, Seemüller E. 'Candidatus Phytoplasma cynodontis', the phytoplasma associated with bermuda grass white leaf disease. Int J Syst Evol Microbiol 2004; 54:1077–1082 [CrossRef][PubMed]
    [Google Scholar]
  91. Montano HG, Davis RE, Dally EL, Hogenhout S, Pimentel JP et al. 'Candidatus Phytoplasma brasiliense', a new phytoplasma taxon associated with Hibiscus witches' broom disease. Int J Syst Evol Microbiol 2001; 51:1109–1118 [CrossRef][PubMed]
    [Google Scholar]
  92. Arocha Y, López M, Piñol B, Fernández M, Picornell B et al. 'Candidatus Phytoplasma graminis' and 'Candidatus Phytoplasma caricae', two novel phytoplasmas associated with diseases of sugarcane, weeds and papaya in Cuba. Int J Syst Evol Microbiol 2005; 55:2451–2463 [CrossRef][PubMed]
    [Google Scholar]
  93. Lee I-M, Bottner KD, Secor G, Rivera-Varas V. "Candidatus Phytoplasma americanum", a phytoplasma associated with a potato purple top wilt disease complex. Int J Syst Evol Microbiol 2006; 56:1593–1597 [CrossRef][PubMed]
    [Google Scholar]
  94. Jung H-Y, Sawayanagi T, Kakizawa S, Nishigawa H, Miyata S-I et al. 'Candidatus Phytoplasma castaneae', a novel phytoplasma taxon associated with chestnut witches' broom disease. Int J Syst Evol Microbiol 2002; 52:1543–1549 [CrossRef][PubMed]
    [Google Scholar]
  95. Schneider B, Torres E, Martín MP, Schröder M, Behnke H-D et al. 'Candidatus Phytoplasma pini', a novel taxon from Pinus silvestris and Pinus halepensis. Int J Syst Evol Microbiol 2005; 55:303–307 [CrossRef][PubMed]
    [Google Scholar]
  96. Harrison NA, Davis RE, Oropeza C, Helmick EE, Narváez M et al. 'Candidatus Phytoplasma palmicola', associated with a lethal yellowing-type disease of coconut (Cocos nucifera L.) in Mozambique. Int J Syst Evol Microbiol 2014; 64:1890–1899 [CrossRef][PubMed]
    [Google Scholar]
  97. Al-Saady NA, Khan AJ, Calari A, Al-Subhi AM, Bertaccini A. 'Candidatus Phytoplasma omanense', associated with witches'-broom of Cassia italica (Mill.) Spreng. in Oman. Int J Syst Evol Microbiol 2008; 58:461–466 [CrossRef][PubMed]
    [Google Scholar]
  98. Zhao Y, Sun Q, Wei W, Davis RE, Wu W et al. 'Candidatus Phytoplasma tamaricis', a novel taxon discovered in witches'-broom-diseased salt cedar (Tamarix chinensis Lour.). Int J Syst Evol Microbiol 2009; 59:2496–2504 [CrossRef][PubMed]
    [Google Scholar]
  99. Lee I-M, Bottner-Parker KD, Zhao Y, Villalobos W, Moreira L. 'Candidatus Phytoplasma costaricanum' a novel phytoplasma associated with an emerging disease in soybean (Glycine max). Int J Syst Evol Microbiol 2011; 61:2822–2826 [CrossRef][PubMed]
    [Google Scholar]
  100. Nejat N, Vadamalai G, Davis RE, Harrison NA, Sijam K et al. 'Candidatus Phytoplasma malaysianum', a novel taxon associated with virescence and phyllody of Madagascar periwinkle (Catharanthus roseus). Int J Syst Evol Microbiol 2013; 63:540–548 [CrossRef][PubMed]
    [Google Scholar]
  101. Miyazaki A, Shigaki T, Koinuma H, Iwabuchi N, Rauka GB et al. 'Candidatus Phytoplasma noviguineense', a novel taxon associated with Bogia coconut syndrome and banana wilt disease on the island of new Guinea. Int J Syst Evol Microbiol 2018; 68:170–175 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004604
Loading
/content/journal/ijsem/10.1099/ijsem.0.004604
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error